Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T03:57:52.758Z Has data issue: false hasContentIssue false

Schwarzschild modeling of barred galaxies

Published online by Cambridge University Press:  14 May 2020

Eugene Vasiliev
Affiliation:
Institute of Astronomy, University of Cambridge, UK Lebedev Physical Institute, Moscow, Russia Department of Astronomy, University of Michigan, Ann Arbor, MI, USA email: [email protected]
Monica Valluri
Affiliation:
Department of Astronomy, University of Michigan, Ann Arbor, MI, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review the Schwarzschild orbit-superposition approach and present a new implementation of this method, which can deal with a large class of systems, including rotating barred disk galaxies. We discuss two conceptual problems in this field: the intrinsic degeneracy of determining the potential from line-of-sight kinematics, and the non-uniqueness of deprojection and related biases in potential inference, especially acute for triaxial bars. When applied to mock datasets with known 3d shape, our method correctly recovers the pattern speed and other potential parameters. However, more work is needed to systematically address these two problems for real observational datasets.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Binney, J. 2014, MNRAS, 440, 78710.1093/mnras/stu297CrossRefGoogle Scholar
Binney, J. & Tremaine, S. 2008, Galactic Dynamics, 2nd ed., Princeton Univ. pressCrossRefGoogle Scholar
Bovy, J., Kawata, D., & Hunt, J. 2018, MNRAS, 473, 2288CrossRefGoogle Scholar
Brown, J., Valluri, M., Shen, J., & Debattista, V. 2013, ApJ, 778, 151CrossRefGoogle Scholar
Bureau, M. & Athanassoula, E. 2005, ApJ, 626, 15910.1086/430056CrossRefGoogle Scholar
Cappellari, M. 2002, MNRAS, 333, 400CrossRefGoogle Scholar
Cretton, N., de Zeeuw, T., van der Marel, R., & Rix, H.-W. 1999, ApJS, 124, 383CrossRefGoogle Scholar
Cuddeford, P. 1991, MNRAS, 253, 414CrossRefGoogle Scholar
Dejonghe, H. & Merritt, D. 1992, ApJ, 391, 531CrossRefGoogle Scholar
Emsellem, E., Monnet, G., & Bacon, R. 1994, A&A, 285, 723Google Scholar
Fragkoudi, F., di Matteo, P., Haywood, M., et al. 2017, A&A, 607, L4Google Scholar
Gebhardt, K., Richstone, D., Kormendy, J., et al. 2000, AJ, 119, 1157CrossRefGoogle Scholar
Gerhard, O. 1993, MNRAS, 265, 21310.1093/mnras/265.1.213CrossRefGoogle Scholar
Gerhard, O. & Binney, J. 1996, MNRAS, 279, 993CrossRefGoogle Scholar
Hunt, J., Kawata, D., & Martel, H. 2013, MNRAS, 432, 3062CrossRefGoogle Scholar
Kochanek, C. & Rybicki, G. 1996, MNRAS, 280, 1257CrossRefGoogle Scholar
Krajnović, D., Cappellari, M., Emsellem, E., McDermid, R., & de Zeeuw, T. 2005, MNRAS, 357, 1113CrossRefGoogle Scholar
Kuijken, K. & Dubinski, J. 1995, MNRAS, 277, 1341CrossRefGoogle Scholar
Li, Z.-Y., Shen, J., Bureau, M., Zhou, Y., Du, M., & Debattista, V. 2018, ApJ, 854, 65CrossRefGoogle Scholar
Long, R., Mao, S., Shen, J., & Wang, Y. 2013, MNRAS, 428, 347810.1093/mnras/sts285CrossRefGoogle Scholar
Magorrian, J. 2006, MNRAS, 303, 455Google Scholar
Merritt, D. 1997, AJ, 114, 22810.1086/118467CrossRefGoogle Scholar
Portail, M., Wegg, C., Gerhard, O., & Martinez-Valpuesta, I. 2015, MNRAS, 448, 71310.1093/mnras/stv058CrossRefGoogle Scholar
Prendergast, K. & Tomer, E. 1970, AJ, 75, 674CrossRefGoogle Scholar
Rix, H.-W., de Zeeuw, T., Cretton, N., van der Marel, R., & Carollo, M. 1997, ApJ, 488, 702CrossRefGoogle Scholar
Schwarzschild, M. 1979, ApJ, 232, 23610.1086/157282CrossRefGoogle Scholar
Siopis, C., Gebhardt, K., Lauer, T., et al. 2009, ApJ, 643, 946CrossRefGoogle Scholar
Thomas, J., Saglia, R., Bender, R., Thomas, D., Gebhardt, K., Magorrian, J., & Richstone, D. 2004, MNRAS, 353, 39110.1111/j.1365-2966.2004.08072.xCrossRefGoogle Scholar
Valluri, M., Merritt, D., & Emsellem, E. 2004, ApJ, 602, 66CrossRefGoogle Scholar
van den Bosch, R., van de Ven, G., Verolme, E., Cappellari, M., & de Zeeuw, T. 2008, MNRAS, 385, 647CrossRefGoogle Scholar
van de Ven, G., de Zeeuw, T., & van den Bosch, R. 2008, MNRAS, 385, 614CrossRefGoogle Scholar
van der Marel, R. & Franx, M. 1993, ApJ, 407, 525CrossRefGoogle Scholar
Vasiliev, E. 2013, MNRAS, 434, 3174CrossRefGoogle Scholar
Vasiliev, E. 2019, MNRAS, 482, 1525CrossRefGoogle Scholar
Vasiliev, E. & Athanassoula, E. 2015, MNRAS, 450, 284210.1093/mnras/stv805CrossRefGoogle Scholar
Vasiliev, E. & Valluri, M. 2020, ApJ, 889, 39CrossRefGoogle Scholar
Zhao, H.-S., 1996, MNRAS, 283, 149CrossRefGoogle Scholar
Zhu, L., van de Ven, G., van den Bosch, R., et al. 2018, Nature Astronomy, 2, 23310.1038/s41550-017-0348-1CrossRefGoogle Scholar