Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T11:49:48.587Z Has data issue: false hasContentIssue false

PAHs and star formation in ELAIS N1 as seen by AKARI

Published online by Cambridge University Press:  04 June 2020

Tímea Kovács
Affiliation:
Department of Astronomy of the Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
Denis Burgarella
Affiliation:
Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille), UMR 7326, 13388 Marseille, France
Hidehiro Kaneda
Affiliation:
Graduate School of Science, Nagoya University, Japan
Cs. Molnár Dániel
Affiliation:
INAF - Osservatorio Astronomico di Cagliari, Via della Scienza 5, I-09047 Selargius (CA), Italy
Shinki Oyabu
Affiliation:
Graduate School of Science, Nagoya University, Japan
Sandor Pinter
Affiliation:
Department of Astronomy of the Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
L. Viktor Toth
Affiliation:
Department of Astronomy of the Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary Konkoly Observatory of the Hungarian Academy of Sciences, Konkoly Thege Miklós út 15-17., H-1121 Budapest, Hungary
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have examined the relationship between star formation and polycyclic aromatic hydrocarbons (PAHs) by fitting the spectral energy distributions (SED) of AKARI selected galaxies. PAHs are excited by the ultraviolet (UV) photons of young stars and can trace star formation in galaxies, but they are disassociated by the strong UV radiation in starbursts. AKARI covered the mid-infrared, where the PAHs emit their radiation, with a high density of photometric bands. These observations allow us to estimate the star formation rate and the PAH mass fraction of the dust in galaxies. In the future the James Webb Space Telescope (JWST) will also make measurements in this wavelength range. This research can therefore be considered as a pathfinder to similar studies that will come later from JWST observations.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Boquien, M., Burgarella, D., Roehlly, Y., et al. 2019, A&A, 622, A103Google Scholar
Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 100010.1046/j.1365-8711.2003.06897.xCrossRefGoogle Scholar
Chabrier, G. 2003, PASP, 115, 76310.1086/376392CrossRefGoogle Scholar
Davidge, H., Serjeant, S., Pearson, C., et al. 2017, MNRAS, 472, 425910.1093/mnras/stx1935CrossRefGoogle Scholar
Draine, B. T. & Li, A. 2007, ApJ, 657, 81010.1086/511055CrossRefGoogle Scholar
Gardner, J. P., Mather, J. C., Clampin, M., et al. 2006, SSR, 123, 485Google Scholar
Kovács, T. O., Burgarella, D., Kaneda, H., et al. 2019, PASJ, 71, 2710.1093/pasj/psy145CrossRefGoogle Scholar
Marton, G., Calzoletti, L., Perez Garcia, A. M., et al. 2017, arXiv:1705.05693Google Scholar
Noll, S., Burgarella, D., Giovannoli, E., et al. 2009, A&A, 507, 1793Google Scholar
Roehlly, Y., Burgarella, D., Buat, V., et al. 2014, Astronomical Data Analysis Software and Systems XXIII, 485, 347Google Scholar
Schulz, B., Marton, G., Valtchanov, I., et al. 2017, arXiv:1706.00448Google Scholar
Schreiber, C., Pannella, M., Elbaz, D., et al. 2015, A&A, 575, A74Google Scholar
Shipley, H. V, Papovich, C., Rieke, G. H., et al. 2016, ApJ, 818, 6010.3847/0004-637X/818/1/60CrossRefGoogle Scholar