We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Spectral variability offers a new technique to identify small scale structures from scintillation, as well as determining the absorption mechanism for peaked-spectrum (PS) radio sources. In this paper, we present very long baseline interferometry (VLBI) imaging using the long baseline array (LBA) of two PS sources, MRC 0225–065 and PMN J0322–4820, identified as spectrally variable from observations with the Murchison Widefield Array (MWA). We compare expected milliarcsecond structures based on the detected spectral variability with direct LBA imaging. We find MRC 0225–065 is resolved into three components, a bright core and two fainter lobes, roughly 430 pc projected separation. A comprehensive analysis of the magnetic field, host galaxy properties, and spectral analysis implies that MRC 0225–065 is a young radio source with recent jet activity over the last $10^2$–$10^3$ yr. We find PMN J0322–4820 is unresolved on milliarcsecond scales. We conclude PMN J0322–4820 is a blazar with flaring activity detected in 2014 with the MWA. We use spectral variability to predict morphology and find these predictions consistent with the structures revealed by our LBA images.
We present multi-wavelength data and analysis, including new FUV AstroSat/UVIT observations of the spiral galaxy UGC 10420 ($z=0.032$), a member of the cluster Abell 2199. UGC 10420 is present on the edge of the X-ray emitting region of the cluster at a distance of ${\sim} 680$ kpc from the centre. The far-ultraviolet (FUV) data obtained by the AstroSat mission show intense knots of star formation on the leading edge of the galaxy, accompanied by a tail of the same on the diametrically opposite side. Our analysis shows that the images of the galaxy disc in the optical and mid-infrared are much smaller in size than that in the FUV. While the broadband optical colours of UGC 10420 are typical of a post-starburst galaxy, the star formation rate (SFR) derived from a UV-to-IR spectral energy distribution is at least a factor of nine higher than that expected for a star-forming field galaxy of similar mass at its redshift. A careful removal of the contribution of the diffuse intracluster gas shows that the significant diffuse X-ray emission associated with the interstellar medium of UGC 10420 has a temperature, $T_X = 0.24^{+0.09}_{-0.06}$ keV (0.4–2.0 keV) and luminosity, $L_X = 1.8\pm{0.9}\times 10^{40}$ erg s$^{-1}$, which are typical of the X-ray emission from late-type spiral galaxies. Two symmetrically placed X-ray hot spots are observed on either sides of an X-ray weak nucleus.
Our analysis favours a scenario where the interaction of a galaxy with the hot intracluster medium of the cluster, perturbs the gas in the galaxy causing starburst in the leading edge of the disc. On the other hand, the turbulence thus developed may also push some of the gas out of the disc. Interactions between the gas ejected from the galaxy and the intracluster medium can then locally trigger star formation in the wake of the galaxy experiencing ram-pressure stripping. Our data however does not rule out the possibility of a flyby encounter with a neighbouring galaxy, although no relevant candidates are observed in the vicinity of UGC 10420.
Pulsar wind nebulae (PWN) are fascinating systems and archetypal sources for high-energy astrophysics in general. Due to their vicinity, brightness, to the fact that they shine at multi-wavelengths, and especially to their long-living emission at gamma rays, modelling their properties is particularly important for the correct interpretation of the visible Galaxy. A complication in this respect is the variety of properties and morphologies they show at different ages. Here, we discuss the differences among the evolutionary phases of PWN, how they have been modeled in the past and what progresses have been recently made. We approach the discussion from a phenomenological, theoretical (especially numerical) and observational point of view, with particular attention to the most recent results and open questions about the physics of such intriguing sources.
Active galactic nuclei (AGN) have been observed as far as redshift $z \sim 7$. They are crucial in investigating the early Universe as well as the growth of supermassive black holes at their centres. Radio-loud AGN with their jets seen at a small viewing angle are called blazars and show relativistic boosting of their emission. Thus, their apparently brighter jets are easier to detect in the high-redshift Universe. DES J014132.4–542749.9 is a radio-luminous but X-ray weak blazar candidate at $z = 5$. We conducted high-resolution radio interferometric observations of this source with the Australian Long Baseline Array at $1.7$ and $8.5$ GHz. A single, compact radio-emitting feature was detected at both frequencies with a flat radio spectrum. We derived the milliarcsecond-level accurate position of the object. The frequency dependence of its brightness temperature is similar to that of blazar sources observed at lower redshifts. Based on our observations, we can confirm its blazar nature. We compared its radio properties with those of two other similarly X-ray-weak and radio-bright AGN, and found that they show very different relativistic boosting characteristics.
Multi-messenger observations of the transient sky to detect cosmic explosions and counterparts of gravitational wave mergers critically rely on orbiting wide-FoV telescopes to cover the wide range of wavelengths where atmospheric absorption and emission limit the use of ground facilities. Thanks to continuing technological improvements, miniaturised space instruments operating as distributed-aperture constellations are offering new capabilities for the study of high-energy transients to complement ageing existing satellites. In this paper we characterise the performance of the upcoming joint SpIRIT and HERMES-TP/SP constellation for the localisation of high-energy transients through triangulation of signal arrival times. SpIRIT is an Australian technology and science demonstrator satellite designed to operate in a low-Earth Sun-synchronous Polar orbit that will augment the science operations for the equatorial HERMES-TP/SP constellation. In this work we simulate the improvement to the localisation capabilities of the HERMES-TP/SP constellation when SpIRIT is included in an orbital plane nearly perpendicular (inclination = 97.6°) to the HERMES-TP/SP orbits. For the fraction of GRBs detected by three of the HERMES satellites plus SpIRIT, we find that the combined constellation is capable of localising 60% of long GRBs to within ${\sim}30\,\textrm{deg}^{2}$ on the sky, and 60% of short GRBs within ${\sim}1850\,\textrm{deg}^{2}$ ($1\sigma$ confidence regions), though it is beyond the scope of this work to characterise or rule out systematic uncertainty of the same order of magnitude. Based purely on statistical GRB localisation capabilities (i.e., excluding systematic uncertainties and sky coverage), these figures for long GRBs are comparable to those reported by the Fermi Gamma Burst Monitor instrument. These localisation statistics represents a reduction of the uncertainty for the burst localisation region for both long and short GRBs by a factor of ${\sim}5$ compared to the HERMES-TP/SP alone. Further improvements by an additional factor of 2 (or 4) can be achieved by launching an additional 4 (or 6) SpIRIT-like satellites into a Polar orbit, respectively, which would both increase the fraction of sky covered by multiple satellite elements, and also enable localisation of ${\geq} 60\%$ of long GRBs to within a radius of ${\sim}1.5^{\circ}$ (statistical uncertainty) on the sky, clearly demonstrating the value of a distributed all-sky high-energy transient monitor composed of nano-satellites.
Pulsars have been studied extensively over the last few decades and have proven instrumental in exploring a wide variety of physics. Discovering more pulsars emitting at low radio frequencies is crucial to further our understanding of spectral properties and emission mechanisms. The Murchison Widefield Array Voltage Capture System (MWA VCS) has been routinely used to study pulsars at low frequencies and discover new pulsars. The MWA VCS offers the unique opportunity of recording complex voltages from all individual antennas (tiles), which can be off-line beamformed or correlated/imaged at millisecond time resolution. Devising imaged-based methods for finding pulsar candidates, which can be verified in beamformed data, can accelerate the complete process and lead to more pulsar detections. Image-based searches for pulsar candidates can reduce the number of tied-array beams required, increasing compute resource efficiency. Despite a factor of $\sim$4 loss in sensitivity, searching for pulsar candidates in images from the MWA VCS, we can explore a larger parameter space, potentially leading to discoveries of pulsars missed by high-frequency surveys such as steep spectrum pulsars, exotic binary systems, or pulsars obscured in high-time resolution time series data by propagation effects. Image-based searches are also essential to probing parts of parameter space inaccessible to traditional beamformed searches with the MWA (e.g. at high dispersion measures). In this paper we describe the innovative approach and capability of dual-processing MWA VCS data, that is forming 1-s visibilities and sky images, finding pulsar candidates in these images, and verifying by forming tied-array beam. We developed and tested image-based methods of finding pulsar candidates, which are based on pulsar properties such as steep spectral index, polarisation and variability. The efficiency of these methodologies has been verified on known pulsars, and the main limitations explained in terms of sensitivity and low-frequency spectral turnover of some pulsars. No candidates were confirmed to be a new pulsar, but this new capability will now be applied to a larger subset of observations to accelerate pulsar discoveries with the MWA and potentially speed up future searches with the SKA-Low.
We use the MaNGA integral field spectroscopic survey of low-redshift galaxies to compare the stellar populations of the bulge and disc components, identified from their Sérsic profiles, for various samples of galaxies. Bulge-dominated regions tend to be more metal-rich and have slightly older stellar ages than their associated disc-dominated regions. The metallicity difference is consistent with the deeper gravitational potential in bulges relative to discs, which allows bulges to retain more of the metals produced by stars. The age difference is due to star formation persisting longer in discs relative to bulges. Relative to galaxies with lower stellar masses, galaxies with higher stellar masses tend to have bulge-dominated regions that are more metal-rich and older (in light-weighted measurements) than their disc-dominated regions. This suggests high-mass galaxies quench from the inside out, while lower-mass galaxies quench across the whole galaxy simultaneously. Early-type galaxies tend to have bulge-dominated regions the same age as their disc-dominated regions, while late-type galaxies tend to have disc-dominated regions significantly younger than their bulge-dominated regions. Central galaxies tend to have a greater metallicity difference between their bulge-dominated regions and disc-dominated regions than satellite galaxies at similar stellar mass. This difference may be explained by central galaxies being subject to mergers or extended gas accretion bringing new, lower-metallicity gas to the disc, thereby reducing the average metallicity and age of the stars; quenching of satellite discs may also play a role.
The amount and complexity of data delivered by modern galaxy surveys has been steadily increasing over the past years. New facilities will soon provide imaging and spectra of hundreds of millions of galaxies. Extracting coherent scientific information from these large and multi-modal data sets remains an open issue for the community and data-driven approaches such as deep learning have rapidly emerged as a potentially powerful solution to some long lasting challenges. This enthusiasm is reflected in an unprecedented exponential growth of publications using neural networks, which have gone from a handful of works in 2015 to an average of one paper per week in 2021 in the area of galaxy surveys. Half a decade after the first published work in astronomy mentioning deep learning, and shortly before new big data sets such as Euclid and LSST start becoming available, we believe it is timely to review what has been the real impact of this new technology in the field and its potential to solve key challenges raised by the size and complexity of the new datasets. The purpose of this review is thus two-fold. We first aim at summarising, in a common document, the main applications of deep learning for galaxy surveys that have emerged so far. We then extract the major achievements and lessons learned and highlight key open questions and limitations, which in our opinion, will require particular attention in the coming years. Overall, state-of-the-art deep learning methods are rapidly adopted by the astronomical community, reflecting a democratisation of these methods. This review shows that the majority of works using deep learning up to date are oriented to computer vision tasks (e.g. classification, segmentation). This is also the domain of application where deep learning has brought the most important breakthroughs so far. However, we also report that the applications are becoming more diverse and deep learning is used for estimating galaxy properties, identifying outliers or constraining the cosmological model. Most of these works remain at the exploratory level though which could partially explain the limited impact in terms of citations. Some common challenges will most likely need to be addressed before moving to the next phase of massive deployment of deep learning in the processing of future surveys; for example, uncertainty quantification, interpretability, data labelling and domain shift issues from training with simulations, which constitutes a common practice in astronomy.
We present a catalogue of over 7000 sources from the GLEAM survey which have significant structure on sub-arcsecond scales at 162 MHz. The compact nature of these sources was detected and quantified via their Interplanetary Scintillation (IPS) signature, measured in interferometric images from the Murchison Widefield Array. The advantage of this approach is that all sufficiently compact sources across the survey area are included down to a well-defined flux density limit. The survey is based on
${\sim}250\times 10\hbox{-}\mathrm{min}$
observations, and the area covered is somewhat irregular, but the area within
$1\,\mathrm{h}<\mathrm{RA}<11\,\mathrm{h}$
;
$-10^\circ<\mathrm{Decl.}<+20^\circ$
is covered entirely, and over 85% of this area has a detection limit for compact structure below 0.2 Jy. 7839 sources clearly showing IPS were detected (
${>}5\sigma$
confidence), with a further 5550 tentative (
${>}2\sigma$
confidence) detections. Normalised Scintillation Indices (NSI; a measure of the fraction of flux density coming from a compact component) are reported for these sources. Robust and informative upper limits on the NSI are reported for a further 31081 sources. This represents the largest survey of compact sources at radio frequencies ever undertaken.
The rapid formation of supermassive black holes (SMBHs) at high redshifts is still a puzzle. One hypothesis is that intermediate-mass black holes (IMBHs) serve as seeds for their formation, which could arise from hierarchical mergers in dense star clusters. There are two possible pathways for IMBH formation: 1) very massive stars may form in young star clusters, such as Pop3 clusters, and evolve into IMBHs within a few million years; 2) multiple stellar-mass black holes can merge into IMBHs in dense nuclear star clusters. Detailed insights into these scenarios can be obtained through high-resolution star-by-star simulations of dense star clusters. Furthermore, upcoming observations of faint quasars, nuclear star clusters, and Pop3 stars with the James Webb Space Telescope (JWST) will offer valuable data to constrain theoretical models and deepen our understanding of the rapid formation of SMBHs.
One of the largest sources of systematics in time-delay cosmography arises from Mass Sheet Transformation (MST). The degeneracy associated with this transformation is often broken by an assumed profile shape, such as a power-law. A hierarchical strategy has been developed which constrains the global profile shape on a population level, constrained collectively by the kinematics measurements of the lenses. This framework allows one to include non-time-delay lenses to provide constraints to the global profile, improving the H0 constraints. This work tests the hierarchical framework using analytical profiles, and additionally tests the capacity to combine two populations which come from the same profiles but probe different radii due to a change in source redshift. We find that the hierarchical framework is able to compensate for this effect, and the addition of non-time-delay lenses improves the H0 constraint, even though these lenses have different Einstein radii than their time-delay counterparts.
When low- and intermediate-mass stars pass through the Asymptotic Giant Branch (AGB) they experience dramatic changes in their circumstellar shell (CSE) influenced by their mass loss, the possible presence of a (closeby) companion and the magnetic field. Masers, well spread in this environment, provide a powerful tool to reveal the CSE changes occurring when the stars undergo a transitional phase on the AGB. These can be indirect, via for instance the modification of the pumping conditions or a direct consequence of e.g. a companion and/or of the magnetic field. Evidences of such changes have been observed towards Miras, materialized by strong - both in intensity and degree of polarisation - (OH) flaring events and towards stars believed to be transitioning from the Mira to the OH/IR phase, showing an unusual high degree of polarisation. How OH maser emission can be used as a signpost of transitional phases along the AGB is explored.
The evolution of granulation is an important mechanism of the light variations of red supergiants (RSGs). Based on pure and complete samples of RSGs in the Magellanic Clouds, the mechanisms and characteristics of the granulation of RSGs are investigated based on time-series data. As predicted by the basic physical process of granulation and previous works, there are tight relations between granulation and stellar parameters of RSGs (i.e., the scaling relations). The scaling relations of RSGs provide a new method to infer stellar parameters by using the characteristic timescale and amplitude of granulations. Some faint sources deviate from the scaling relations, which may be due to the difference in the properties of the granulation of the RSGs before and after the blue loop or contamination by Mira variables. However, both of these possibilities suggest that the scaling relations of granulation is different among different types of stars.
The protostellar environment where young stars form has physical conditions suitable to excite a number of molecular maser lines that have traditionally provided an unique probe of star formation kinematics, at the highest angular resolution of radio very long baseline interferometry (VLBI) observations. In the following, we will discuss a number of recent results on our understanding of the gas dynamics traced by masers in the vicinity of young forming stars. These findings provide direct clues on how our community can substantially contribute to the field of star formation in the next decade.
Water fountains (WFs) are thought to represent an early stage in the morphological evolution of circumstellar envelopes surrounding low- and intermediate-mass evolved stars. These objects are considered to transition from spherical to asymmetric shapes. Despite their potential importance in this transformation process of evolved stars, there are only a few known examples. To identify new WF candidates, we used databases of circumstellar OH (1612 MHz) and H2O (22.235 GHz) maser sources, and compared the velocity ranges of the two maser lines. Finally, 41 sources were found to have a velocity range for the H2O maser line that exceeded that of the OH maser line. Excluding known planetary nebulae and after reviewing the maser spectra in the original literature, we found for 11 sources the exceedance as significant, qualifying them as new WF candidates.
In this work, the secular evolution of exoplanetary systems is investigated, when the variability of the masses of celestial bodies is the leading factor of dynamical evolution. The masses of the parent star and the planets change due to the particles leaving the bodies and falling on them. At the same time, bodies masses are assumed to change isotropically at different rates. The law of mass change is considered to be known and given function of time. The relative motions of the planets are investigated by the methods of the canonical perturbation theory in the absence of resonances. It is assumed that the orbits of the planets do not intersect. Evolutionary equations in analogues of Poincaré variables (Λi, λi, ξi, ηi, pi, qi) are obtained and used to study the K2-3 exoplanetary system. All analytical and numerical calculations are performed with the aid of the Wolfram Mathematica.
Multi-transition SiO maser emission has been detected in over 10 thousand evolved stars across the plane of the Milky Way by the Bulge Asymmetries and Dynamical Evolution (BAaDE) survey. In addition to the large source catalog of the survey, the frequency coverage is also unprecedented: the J=1-0 (43 GHz) data cover seven separate transitions of SiO, and the J=2-1 (86 GHz) data cover ten SiO transitions. In contrast, most other SiO maser data only probe the SiO v=1 and v=2 at 43 GHz and/or the v=1 at 86 GHz. Our extended range allows for the derivation of SiO line ratios for a huge population of evolved stars, including those derived from rare transitions associated with 29SiO and 30SiO isotopologues. We examine how these ratios are affected by the specific combinations of transitions that are detected in a single source. Furthermore, we present a class of ‘isotopologue dominated’ sources where the 29SiO transitions are the brightest in the 43 GHz spectrum. Finally, using Optical Gravitational Lensing Experiment (OGLE) light curves of our maser stars, changes in line ratios as a function of stellar phase are discussed.
Solar-like stars evolve through the Asymptotic Giant Branch (AGB) phase. This phase is characterized by increased radii, high luminosities, and significant mass loss. In order to understand the survival of companions during this phase, and explain the presence of planets orbiting white dwarfs, it is essential to examine the orbital evolution of these systems. Several physical mechanisms come into play for AGB stars, including stellar mass loss and tidal interactions between the star and its companion. Assessing mass-loss rates and accretion to the companion requires complex radiation-hydro-chemical simulations. Furthermore, comprehending the full history of tidal dissipation in low-mass stars during their late evolutionary stages, which strongly depends on their internal structure, requires dedicated analytical and numerical studies.
We present mean horizontal branch absolute magnitudes and iron abundances for a sample of 39 globular clusters. These quantities were calculated in an unprecedented homogeneous fashion based on Fourier decomposition of ligt curves of RR Lyrae cluster members. Zero points for the luminosity calibrations are discussed. Our photometrically derived metallicities and distances compare very well with spectroscopic determinations of [Fe/H] and accurate distances obtained using Gaia and Hubble Space Telescope data. The need to distinguish between the results for RRab and RRc stars for a correct evaluation of the MV–[Fe/H] relation is discussed. For RRab stars, the relation is non-linear, and the horizontal branch structure plays a significant role. For RRc stars, the relation remains linear and tight, and the slope is very shallow. Hence, the RRc stars seem better indicators of the parental cluster distances. Systematic time-series CCD imaging performed over the last 20 years enabled to discover and classify 330 variables in our sample of globular clusters.