Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T05:47:23.273Z Has data issue: false hasContentIssue false

Dashing through the cluster: An X-ray to radio view of UGC 10420 undergoing ram-pressure stripping

Published online by Cambridge University Press:  15 February 2023

Smriti Mahajan*
Affiliation:
Department of Physical Sciences, Indian Institute for Science Education and Research Mohali- IISERM, Knowledge City, Manauli, 140306, Punjab, India
Kulinder Pal Singh
Affiliation:
Department of Physical Sciences, Indian Institute for Science Education and Research Mohali- IISERM, Knowledge City, Manauli, 140306, Punjab, India
Juhi Tiwari
Affiliation:
Department of Physical Sciences, Indian Institute for Science Education and Research Mohali- IISERM, Knowledge City, Manauli, 140306, Punjab, India
Somak Raychaudhury
Affiliation:
Ashoka University, Rajiv Gandhi Education City, Sonepat, Haryana 131029, India Inter-University Centre for Astronomy and Astrophysics, Ganeshkhind, Pune, Maharashtra 411007, India
*
Corresponding author: S. Mahajan, Email: [email protected]

Abstract

We present multi-wavelength data and analysis, including new FUV AstroSat/UVIT observations of the spiral galaxy UGC 10420 ($z=0.032$), a member of the cluster Abell 2199. UGC 10420 is present on the edge of the X-ray emitting region of the cluster at a distance of ${\sim} 680$ kpc from the centre. The far-ultraviolet (FUV) data obtained by the AstroSat mission show intense knots of star formation on the leading edge of the galaxy, accompanied by a tail of the same on the diametrically opposite side. Our analysis shows that the images of the galaxy disc in the optical and mid-infrared are much smaller in size than that in the FUV. While the broadband optical colours of UGC 10420 are typical of a post-starburst galaxy, the star formation rate (SFR) derived from a UV-to-IR spectral energy distribution is at least a factor of nine higher than that expected for a star-forming field galaxy of similar mass at its redshift. A careful removal of the contribution of the diffuse intracluster gas shows that the significant diffuse X-ray emission associated with the interstellar medium of UGC 10420 has a temperature, $T_X = 0.24^{+0.09}_{-0.06}$ keV (0.4–2.0 keV) and luminosity, $L_X = 1.8\pm{0.9}\times 10^{40}$ erg s$^{-1}$, which are typical of the X-ray emission from late-type spiral galaxies. Two symmetrically placed X-ray hot spots are observed on either sides of an X-ray weak nucleus.

Our analysis favours a scenario where the interaction of a galaxy with the hot intracluster medium of the cluster, perturbs the gas in the galaxy causing starburst in the leading edge of the disc. On the other hand, the turbulence thus developed may also push some of the gas out of the disc. Interactions between the gas ejected from the galaxy and the intracluster medium can then locally trigger star formation in the wake of the galaxy experiencing ram-pressure stripping. Our data however does not rule out the possibility of a flyby encounter with a neighbouring galaxy, although no relevant candidates are observed in the vicinity of UGC 10420.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of the Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abolfathi, B., et al., 2018, ApJS, 235, 42Google Scholar
Arnaud, K. A., 1996, in Jacoby, G. H., Barnes J., eds, Astronomical Society of the Pacific Conference Series Vol. 101, Astronomical Data Analysis Software and Systems V. p. 17 Google Scholar
Baldwin, J. A., Phillips, M. M., Terlevich, R., 1981, PASP, 93, 5Google Scholar
Balogh, M., et al., 2004, MNRAS, 348, 1355Google Scholar
Bekki, K., 2014, MNRAS, 438, 444Google Scholar
Bekki, K., Couch, W. J., 2003, ApJ, 596, L13Google Scholar
Belfiore, F., et al., 2016, MNRAS, 461, 3111Google Scholar
Bianchi, L., 2011, Ap&SS, 335, 51Google Scholar
Boselli, A., Cortese, L., Boquien, M., Boissier, S., Catinella, B., Gavazzi, G., Lagos, C., Saintonge, A., 2014, A&A, 564, A67CrossRefGoogle Scholar
Boselli, A., et al., 2021, A&A, 646, A139Google Scholar
Boselli, A., Fossati, M., Sun, M., 2022, A&A Rev., 30, 3CrossRefGoogle Scholar
Bruzual, G., Charlot, S., 2003, MNRAS, 344, 1000Google Scholar
Buta, R. J., 2019, MNRAS, 488, 590Google Scholar
Cattorini, F., Gavazzi, G., Boselli, A., Fossati, M., 2022, arXiv e-prints, p. arXiv:2211.06437Google Scholar
Chabrier, G., 2003, ApJ, 586, L133Google Scholar
Charlot, S., Fall, S. M., 2000, ApJ, 539, 718Google Scholar
Cortese, L., et al., 2007, MNRAS, 376, 157Google Scholar
Cowie, L. L., Songaila, A., 1977, Nature, 266, 501Google Scholar
Cramer, W. J., et al., 2021, ApJ, 921, 22Google Scholar
Crowl, H. H., Kenney, J. D., van Gorkom, J. H., Chung, A., Rose, J. A., 2006, in American Astronomical Society Meeting Abstracts. p. 211.11Google Scholar
Cybulski, R., Yun, M. S., Fazio, G. G., Gutermuth, R. A., 2014, MNRAS, 439, 3564CrossRefGoogle Scholar
Dressler A., 1980, ApJ, 236, 351Google Scholar
Fraser-McKelvie, A., et al., 2020, MNRAS, 495, 4158CrossRefGoogle Scholar
Gavazzi, G., O’Neil, K., Boselli, A., van Driel, W., 2006, A&A, 449, 929Google Scholar
Gavazzi, G., et al., 2015, A&A, 576, A16Google Scholar
Gil de Paz, A., et al., 2007, ApJS, 173, 185Google Scholar
Gunn, J. E., Gott, J. Richard, I., 1972, ApJ, 176, 1Google Scholar
Haines, C. P., et al., 2009, ApJ, 704, 126Google Scholar
Hao, C.-N., Kennicutt, R. C., Johnson, B. D., Calzetti, D., Dale, D. A., Moustakas, J., 2011, ApJ, 741, 124Google Scholar
Hardcastle, M. J., et al., 2016, MNRAS, 455, 3526CrossRefGoogle Scholar
Hess, K. M., Kotulla, R., Chen, H., Carignan, C., Gallagher, J. S., Jarrett, T. H., Kraan-Korteweg, R. C., 2022, arXiv eprints, p. arXiv:2209.05605Google Scholar
Iglesias-Páramo, J., et al., 2006, ApJS, 164, 38Google Scholar
Joye, W. A., Mandel, E., 2003, in Payne, H. E., Jedrzejewski R. I., Hook R. N., eds, Astronomical Society of the Pacific Conference Series Vol. 295, Astronomical Data Analysis Software and Systems XII. p. 489 Google Scholar
Kapferer, W., Sluka, C., Schindler, S., Ferrari, C., Ziegler, B., 2009, A&A, 499, 87Google Scholar
Kawaharada, M., Makishima, K., Kitaguchi, T., Okuyama, S., Nakazawa, K., Fukazawa, Y., 2010, PASJ, 62, 115Google Scholar
Kennicutt, R. C., Evans, N. J., 2012, ARA&A, 50, 531Google Scholar
Kumar, A., et al., 2012, in Takahashi, T., Murray S. S., den Herder J.-W. A., eds, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 8443, Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray. p. 84431N (arXiv:1208.4670), doi: 10.1117/12.924507 Google Scholar
Kuntz, K. D., Snowden, S. L., 2008, A&A, 478, 575Google Scholar
Lee, J., Kimm, T., Katz, H., Rosdahl, J., Devriendt, J., Slyz, A., 2020, ApJ, 905, 31Google Scholar
Lee, J. H., Lee, M. G., Mun, J. Y., Cho, B. S., Kang, J., 2022, ApJ, 931, L22Google Scholar
Leitherer, C., et al., 1999, ApJS, 123, 3Google Scholar
Li, J.-T., Li, Z., Wang, Q. D., Irwin, J. A., Rossa, J., 2008, MNRAS, 390, 59CrossRefGoogle Scholar
Madau, P., Dickinson, M., 2014, ARA&A, 52, 415Google Scholar
Mahajan, S., Raychaudhury, S., 2009, MNRAS, 400, 687Google Scholar
Mahajan, S., Haines, C. P., Raychaudhury, S., 2010, MNRAS, 404, 1745Google Scholar
Mahajan, S., Raychaudhury, S., Pimbblet, K. A., 2012, MNRAS, 427, 1252Google Scholar
Mahajan, S., Ashby, M. L. N., Willner, S. P., Barmby, P., Fazio, G. G., Maragkoudakis, A., Raychaudhury, S., Zezas, A., 2019, MNRAS, 482, 560Google Scholar
Mahajan, S., et al., 2020, MNRAS, 491, 398Google Scholar
Mahajan, S., Singh, K. P., Postma, J. E., Pradeep, K. G., George, K., Côté, P., 2022, PASA, 39, e048Google Scholar
Mahdavi, A., Geller, M. J., 2001, ApJ, 554, L129Google Scholar
Mineo, S., Gilfanov, M., Sunyaev, R., 2012, MNRAS, 426, 1870Google Scholar
Mirakhor, M. S., Walker, S. A., 2020, MNRAS, 497, 3943Google Scholar
Moore, B., Katz, N., Lake, G., Dressler, A., Oemler, A., 1996, Nature, 379, 613CrossRefGoogle Scholar
Murphy, E. J., et al., 2011, ApJ, 737, 67Google Scholar
Owen, R. A., Warwick, R. S., 2009, MNRAS, 394, 1741Google Scholar
Peluso, G., et al., 2022, ApJ, 927, 130Google Scholar
Poggianti, B. M., et al., 2016, AJ, 151, 78Google Scholar
Poggianti, B. M., et al., 2017, ApJ, 844, 48Google Scholar
Porter, S. C., Raychaudhury, S., 2005, MNRAS, 364, 1387Google Scholar
Postma, J. E., Leahy, D., 2017, PASP, 129, 115002Google Scholar
Postma, J. E., Leahy, D., 2021, Journal of Astrophysics and Astronomy, 42, 30Google Scholar
Rines, K. J., Geller, M. J., Diaferio, A., Hwang, H. S., 2016, ApJ, 819, 63Google Scholar
Roberts, I. D., van Weeren, R. J., Timmerman, R., Botteon, A., Gendron-Marsolais, M., Ignesti, A., Rottgering, H. J. A., 2022a, A&A, 658, A44CrossRefGoogle Scholar
Roberts, I. D., et al., 2022b, ApJ, 941, 77Google Scholar
Roman-Oliveira, F. V., Chies-Santos, A. L., Rodríguez del Pino, B., Aragón-Salamanca, A., Gray, M. E., Bamford, S. P., 2019, MNRAS, 484, 892Google Scholar
Safarzadeh, M., Loeb, A., 2019, MNRAS, 486, L26Google Scholar
Schlafly, E. F., Finkbeiner, D. P., 2011, ApJ, 737, 103Google Scholar
Shimwell, T. W., et al., 2022, A&A, 659, A1Google Scholar
Singh, K. P., et al., 2014, in Takahashi, T., den Herder J.-W. A., Bautz M., eds, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 9144,Google Scholar
Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray. p. 91441S, doi: 10.1117/12.2062667 Google Scholar
Smith, R. J., et al., 2010, MNRAS, 408, 1417Google Scholar
Song, H., Hwang, H. S., Park, C., Tamura, T., 2017, ApJ, 842, 88Google Scholar
Speagle, J. S., Steinhardt, C. L., Capak, P. L., Silverman, J. D., 2014, ApJS, 214, 15Google Scholar
Steinhauser, D., Schindler, S., Springel, V., 2016, A&A, 591, A51Google Scholar
Tandon, S. N., et al., 2017, AJ, 154, 128Google Scholar
Tandon, S. N., et al., 2020, AJ, 159, 158Google Scholar
Taylor, M. B., 2005, in Shopbell, P., Britton M., Ebert R., eds, Astronomical Society of the Pacific Conference Series Vol. 347, Astronomical Data Analysis Software and Systems XIV. p. 29 Google Scholar
Thilker, D. A., et al., 2007, ApJS, 173, 538Google Scholar
Thimmappa, R., Stawarz, Ł., Pajdosz-Śmierciak U., Balasubramaniam, K., Marchenko, V., 2021, ApJ, 921, 44Google Scholar
Tiwari, J., Singh, K. P., 2021, MNRAS, 500, 5524Google Scholar
Toba, Y., et al., 2014, ApJ, 788, 45Google Scholar
Tonnesen, S., Bryan, G. L., 2009, ApJ, 694, 789Google Scholar
Toomre, A., Toomre, J., 1972, ApJ, 178, 623Google Scholar
Troncoso-Iribarren, P., Padilla, N., Santander, C., Lagos, C. D. P., García-Lambas, D., Rodríguez, S., Contreras, S., 2020, MNRAS, 497, 4145Google Scholar
Tyler, K., Quillen, A. C., LaPage, A., Rieke, G. H., 2004, ApJ, 610, 213Google Scholar
Vulcani, B., Poggianti, B. M., Finn, R. A., Rudnick, G., Desai, V., Bamford, S., 2010, ApJ, 710, L1CrossRefGoogle Scholar
Vulcani, B., et al., 2018, ApJ, 866, L25CrossRefGoogle Scholar
Werk, J. K., et al., 2010, AJ, 139, 279Google Scholar
Willingale, R., Starling, R. L. C., Beardmore, A. P., Tanvir, N. R., O’Brien, P. T., 2013, MNRAS, 431, 394CrossRefGoogle Scholar
Wright, E. L., et al., 2010, AJ, 140, 1868Google Scholar
Yagi, M., et al., 2010, AJ, 140, 1814Google Scholar
da Cunha, E., Charlot, S., Elbaz, D., 2008, MNRAS, 388, 1595Google Scholar