We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A star can be defined as a self-gravitating ball of gas, usually spherical or spheroidal, that is powered by nuclear fusion in its interior. In this text, we will go slightly beyond the boundaries of this definition to discuss protostars and pre-main sequence stars (not yet powered by fusion), stellar remnants (no longer powered by fusion), and brown dwarfs (too small to be powered by fusion).
In 1938, Ernst Öpik pointed out that if the process that comes into play is thermonuclear fusion, then main sequence stars are powered by fusion in their cores, and red giants are stars that have exhausted their central fuel.
Thus, the Sun has existed for one-third of the total history of the universe. Some stars are older than the Sun; some are younger. In Chapter 6, our examination of main sequence models neglected the question of how stars form.
However, although stars are generally in hydrostatic equilibrium, all stars are also variable. We can distinguish broad families of variation. The most spectacular variation involves catastrophic changes such as supernova explosions. Some stellar variability arises from external influences, such as accretion of mass from a disk or a companion.
In addition, even modest rotation rates can cause significant alterations to the internal structure of stars. Finally, knowing how stars are spun up and spun down is important if we are to study a star’s complete history, from a slowly whirling gas cloud to a swiftly spinning white dwarf or a millisecond pulsar.
Since this was about 50 times the Kelvin–Helmholtz time for the Sun, a non-gravitational source of energy was obviously required to keep the Sun shining over the age of the solar system. A hint of what that energy source could be was provided by the physicist Francis Aston in 1920.
Up to this point, we have mainly been treating stars as if they exist in splendid isolation. However, stars are frequently found in binary systems, with two stars orbiting their barycenter. If the stars are sufficiently close to each other, then they will be tidally distorted, destroying the spherical symmetry of the standard equations of stellar structure.
Since all stars other than the Sun are at a distance that is large compared to their diameter, discerning their detailed structure is challenging. In this chapter, we start with the Hoyle-ish assumption that a star is a pretty simple structure: a static, isolated sphere.
We present an overview of the Southern-sky MWA Rapid Two-metre (SMART) pulsar survey that exploits the Murchison Widefield Array’s large field of view and voltage-capture system to survey the sky south of 30$^{\circ}$ in declination for pulsars and fast transients in the 140–170 MHz band. The survey is enabled by the advent of the Phase II MWA’s compact configuration, which offers an enormous efficiency in beam-forming and processing costs, thereby making an all-sky survey of this magnitude tractable with the MWA. Even with the long dwell times employed for the survey (4800 s), data collection can be completed in $<$100 h of telescope time, while still retaining the ability to reach a limiting sensitivity of $\sim$2–3 mJy (at 150 MHz, near zenith), which is effectively 3–5 times deeper than the previous-generation low-frequency southern-sky pulsar survey, completed in the 1990s. Each observation is processed to generate $\sim$5000–8000 tied-array beams that tessellate the full $\sim 610\, {\textrm{deg}^{2}}$ field of view (at 155 MHz), which are then processed to search for pulsars. The voltage-capture recording of the survey also allows a multitude of post hoc processing options including the reprocessing of data for higher time resolution and even exploring image-based techniques for pulsar candidate identification. Due to the substantial computational cost in pulsar searches at low frequencies, the survey data processing is undertaken in multiple passes: in the first pass, a shallow survey is performed, where 10 min of each observation is processed, reaching about one-third of the full-search sensitivity. Here we present the system overview including details of ongoing processing and initial results. Further details including first pulsar discoveries and a census of low-frequency detections are presented in a companion paper. Future plans include deeper searches to reach the full sensitivity and acceleration searches to target binary and millisecond pulsars. Our simulation analysis forecasts $\sim$300 new pulsars upon the completion of full processing. The SMART survey will also generate a complete digital record of the low-frequency sky, which will serve as a valuable reference for future pulsar searches planned with the low-frequency Square Kilometre Array.
We present the highest resolution and sensitivity $\sim$$1.4\,$GHz continuum observations of the Eridanus supergroup obtained as a part of the Widefield Australian Square Kilometer Array Pathfinder (ASKAP) L-band Legacy All-sky Blind surveY (WALLABY) pre-pilot observations using the ASKAP. We detect 9461 sources at 1.37 GHz down to a flux density limit of $\sim$$0.1$ mJy at $6.1''\times 7.9''$ resolution with a median root mean square of 0.05 mJy beam$^{-1}$. We find that the flux scale is accurate to within 5 % (compared to NVSS at 1.4 GHz). We then determine the global properties of eight Eridanus supergroup members, which are detected in both radio continuum and neutral hydrogen (HI) emission, and find that the radio-derived star formation rates (SFRs) agree well with previous literature. Using our global and resolved radio continuum properties of the nearby Eridanus galaxies, we measure and extend the infrared-radio correlation (IRRC) to lower stellar masses and inferred SFRs than before. We find the resolved IRRC to be useful for: (1) discriminating between active galactic nuclei and star-forming galaxies; (2) identifying background radio sources; and (3) tracing the effects of group environment pre-processing in NGC 1385. We find evidence for tidal interactions and ram-pressure stripping in the HI, resolved spectral index and IRRC morphologies of NGC 1385. There appears to be a spatial coincidence (in projection) of double-lobed radio jets with the central HI hole of NGC 1367. The destruction of polycyclic aromatic hydrocarbons by merger-induced shocks may be driving the observed WISE W3 deficit observed in NGC 1359. Our results suggest that resolved radio continuum and IRRC studies are excellent tracers of the physical processes that drive galaxy evolution and will be possible on larger sample of sources with upcoming ASKAP radio continuum surveys.
We demonstrate that the Bayesian evidence can be used to find a good approximation of the ground truth likelihood function of a dataset, a goal of the likelihood-free inference (LFI) paradigm. As a concrete example, we use forward modelled sky-averaged 21-cm signal antenna temperature datasets where we artificially inject noise structures of various physically motivated forms. We find that the Gaussian likelihood performs poorly when the noise distribution deviates from the Gaussian case, for example, heteroscedastic radiometric or heavy-tailed noise. For these non-Gaussian noise structures, we show that the generalised normal likelihood is on a similar Bayesian evidence scale with comparable sky-averaged 21-cm signal recovery as the ground truth likelihood function of our injected noise. We therefore propose the generalised normal likelihood function as a good approximation of the true likelihood function if the noise structure is a priori unknown.
Phosphorus nitride (PN) is believed to be one of the major reservoirs of phosphorus in the interstellar medium (ISM). For this reason, understanding which reactions produce PN in space and predicting their rate coefficients is important for modelling the relative abundances of P-bearing species and clarifying the role of phosphorus in astrochemistry. In this work, we explore the potential energy surfaces of the $\textrm{P}(^4\textrm{S}) + \textrm{NH}(^3\Sigma^-)$ and $\textrm{N}(^4\textrm{S}) + \textrm{PH}(^3\Sigma^-)$ reactions and the formation of $\textrm{H}(^2\textrm{S}) + \textrm{PN}(^1\Sigma^+)$ through high accuracy ab initio calculations and the variable reaction coordinate transition state theory (VRC-TST). We found that both reactions proceed without an activation barrier and with similar rate coefficients that can be described by a modified Arrhenius equation ($k(T)=\alpha\!\left( T/300 \right)^{\beta} \exp\!{(\!-\!\gamma/T)})$ with $\alpha=0.93\times 10^{-10}\rm cm^3\,s^{-1}$, $\beta=-0.18$ and $\gamma=0.24\, \rm K$ for the $\textrm{P} + \textrm{NH} \longrightarrow \textrm{H} + \textrm{PN}$ reaction and $\alpha=0.88\times 10^{-10}\rm cm^3\,s^{-1}$, $\beta=-0.18$ and $\gamma=1.01\, \rm K$ for the $\textrm{N} + \textrm{PH} \longrightarrow \textrm{H} + \textrm{PN}$ one. Both reactions are expected to be relevant for modelling PN abundances even in the cold environments of the ISM. Given the abundance of hydrogen in space, we have also predicted rate coefficients for the destruction of PN via H + PN collisions.
We present observations of the four $^2 \Pi _{3/2}\,J=3/2$ ground-rotational state transitions of the hydroxyl molecule (OH) along 107 lines of sight both in and out of the Galactic plane: 92 sets of observations from the Arecibo telescope and 15 sets of observations from the Australia Telescope Compact Array (ATCA). Our Arecibo observations included off-source pointings, allowing us to measure excitation temperature ($T_{\rm ex}$) and optical depth, while our ATCA observations give optical depth only. We perform Gaussian decomposition using the Automated Molecular Excitation Bayesian line-fitting Algorithm ‘Amoeba’ (Petzler, Dawson, & Wardle 2021, ApJ, 923, 261) fitting all four transitions simultaneously with shared centroid velocity and width. We identify 109 features across 38 sightlines (including 58 detections along 27 sightlines with excitation temperature measurements). While the main lines at 1665 and 1667 MHz tend to have similar excitation temperatures (median $|\Delta T_{\rm ex}({\rm main})|=0.6\,$K, 84% show $|\Delta T_{\rm ex}({\rm main})|<2\,$K), large differences in the 1612 and 1720 MHz satellite line excitation temperatures show that the gas is generally not in LTE. For a selection of sightlines, we compare our OH features to associated (on-sky and in velocity) Hi cold gas components (CNM) identified by Nguyen et al. (2019, ApJ, 880, 141) and find no strong correlations. We speculate that this may indicate an effective decoupling of the molecular gas from the CNM once it accumulates.
We examine the long-term stability (on decade-like timescales) of optical ‘high polarisation’ (HP) state with ${p_{opt}}$${> 3\%}$, which commonly occurs in flat-spectrum (i.e., beamed) radio quasars (FSRQs) and is a prominent marker of blazar state. Using this clue, roughly a quarter of the FSRQ population has been reported to undergo HP $\leftrightarrow$ non-HP state transition on year-like timescales. This work examines the extent to which HP (i.e., blazar) state can endure in a FSRQ, despite these ‘frequent’ state transitions. This is the first attempt to verify, using purely opto-polarimetric data for a much enlarged sample of blazars, the recent curious finding that blazar state in individual quasars persists for at least a few decades, despite its changing/swinging observed fairly commonly on year-like timescales. The present analysis is based on a well-defined sample of 83 radio quasars, extracted from the opto-polarimetric survey RoboPol (2013–2017), for which old opto-polarimetric data taken prior to 1990 could be found in the literature. By a source-wise comparison of these two datasets of the same observable ($p_{opt}$), we find that $\sim$90% of the 63 quasars found in blazar state in our RoboPol sample, were also observed to be in that state about three decades before. On the other hand, within the RoboPol survey itself, we find that roughly a quarter of the blazars in our sample migrated to the other polarisation state on year-like timescales, by crossing the customary $p_{opt}$ = 3% threshold. Evidently, these relatively frequent transitions (in either direction) do not curtail the propensity of a radio quasar to retain its blazar (i.e., HP) state for at least a few decades. The observed transitions/swings of polarisation state are probably manifestation of transient processes, like ejections of synchrotron plasma blobs (VLBI radio knots) from the active nucleus.
We describe the first results from the All-sky BRIght, Complete Quasar Survey (AllBRICQS), which aims to discover the last remaining optically bright quasars. We present 156 spectroscopically confirmed quasars (140 newly identified) having $|b|>10^{\circ}$. 152 of the quasars have Gaia DR3 magnitudes brighter than $B_{P}=16.5$ or $R_{P}=16$ mag, while four are slightly fainter. The quasars span a redshift range of $z=0.07-3.93$. In particular, we highlight the properties of J0529-4351 at $z=3.93$, which, if unlensed, is one of the most intrinsically luminous quasars in the Universe. The AllBRICQS sources have been selected by combining data from the Gaia and WISE all-sky satellite missions, and we successfully identify quasars not flagged as candidates by Gaia Data Release 3. We expect the completeness to be $\approx$96% within our magnitude and latitude limits, while the preliminary results indicate a selection purity of $\approx$96%. The optical spectroscopy used for source classification will also enable detailed quasar characterisation, including black hole mass measurements and identification of foreground absorption systems. The AllBRICQS sources will greatly enhance the number of quasars available for high-signal-to-noise follow-up with present and future facilities.