We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We analyse an optimal portfolio and consumption problem with stochastic factor and delay over a finite time horizon. The financial market includes a risk-free asset, a risky asset and a stochastic factor. The price process of the risky asset is modelled as a stochastic differential delay equation whose coefficients vary according to the stochastic factor; the drift also depends on its historical performance. Employing the stochastic dynamic programming approach, we establish the associated Hamilton–Jacobi–Bellman equation. Then we solve the optimal investment and consumption strategies for the power utility function. We also consider a special case in which the price process of the stochastic factor degenerates into a Cox–Ingersoll–Ross model. Finally, the effects of the delay variable on the optimal strategies are discussed and some numerical examples are presented to illustrate the results.
The Douglas–Rachford method has been employed successfully to solve many kinds of nonconvex feasibility problems. In particular, recent research has shown surprising stability for the method when it is applied to finding the intersections of hypersurfaces. Motivated by these discoveries, we reformulate a second order boundary value problem (BVP) as a feasibility problem where the sets are hypersurfaces. We show that such a problem may always be reformulated as a feasibility problem on no more than three sets and is well suited to parallelization. We explore the stability of the method by applying it to several BVPs, including cases where the traditional Newton’s method fails.
Over the last two decades the complex network paradigm has proven to be a fruitful tool for the investigation of complex systems in many areas of science; for example, the Internet, neural networks and social networks. This book provides an overview of applications of network theory to climate variability, such as the El Niño/Southern Oscillation and the Indian Monsoon, presenting recent important results obtained with these techniques and showing their potential for further development and research. The book is aimed at researchers and graduate students in climate science. A basic background in physics and mathematics is required. Several of the methodologies presented here will also be valuable to a broader audience of those interested in network science, for example, from biomedicine, ecology and economics.
Providing a comprehensive introduction to the fundamentals and applications of flow and heat transfer in conventional and miniature systems, this fully enhanced and updated edition covers all the topics essential for graduate courses on two-phase flow, boiling, and condensation. Beginning with a concise review of single-phase flow fundamentals and interfacial phenomena, detailed and clear discussion is provided on a range of topics, including two-phase hydrodynamics and flow regimes, mathematical modeling of gas-liquid two-phase flows, pool and flow boiling, flow and boiling in mini and microchannels, external and internal-flow condensation with and without noncondensables, condensation in small flow passages, and two-phase choked flow. Numerous solved examples and end-of-chapter problems that include many common design problems likely to be encountered by students, make this an essential text for graduate students. With up-to-date detail on the most recent research trends and practical applications, it is also an ideal reference for professionals and researchers in mechanical, nuclear, and chemical engineering.
Explicit solutions are rarely available for water wave scattering problems. An analytical procedure is presented here to solve the boundary value problem associated with wave scattering by a complete vertical porous barrier with two gaps in it. The original problem is decomposed into four problems involving vertical solid barriers. The decomposed problems are solved analytically by using a weakly singular integral equation. Explicit expressions are obtained for the scattering amplitudes and numerical results are presented. The results obtained can be used as a benchmark for other wave scattering problems involving complex geometrical structures.
We present a Rayleigh–Ritz method for the approximation of fluid flow in a curved duct, including the secondary cross-flow, which is well known to develop for nonzero Dean numbers. Having a straightforward method to estimate the cross-flow for ducts with a variety of cross-sectional shapes is important for many applications. One particular example is in microfluidics where curved ducts with low aspect ratio are common, and there is an increasing interest in nonrectangular duct shapes for the purpose of size-based cell separation. We describe functionals which are minimized by the axial flow velocity and cross-flow stream function which solve an expansion of the Navier–Stokes model of the flow. A Rayleigh–Ritz method is then obtained by computing the coefficients of an appropriate polynomial basis, taking into account the duct shape, such that the corresponding functionals are stationary. Whilst the method itself is quite general, we describe an implementation for a particular family of duct shapes in which the top and bottom walls are described by a polynomial with respect to the lateral coordinate. Solutions for a rectangular duct and two nonstandard duct shapes are examined in detail. A comparison with solutions obtained using a finite-element method demonstrates the rate of convergence with respect to the size of the basis. An implementation for circular cross-sections is also described, and results are found to be consistent with previous studies.
We study the problem of choosing the best subset of $p$ features in linear regression, given $n$ observations. This problem naturally contains two objective functions including minimizing the amount of bias and minimizing the number of predictors. The existing approaches transform the problem into a single-objective optimization problem. We explain the main weaknesses of existing approaches and, to overcome their drawbacks, we propose a bi-objective mixed integer linear programming approach. A computational study shows the efficacy of the proposed approach.