Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T23:24:48.515Z Has data issue: false hasContentIssue false

A RAYLEIGH–RITZ METHOD FOR NAVIER–STOKES FLOW THROUGH CURVED DUCTS

Published online by Cambridge University Press:  11 January 2019

BRENDAN HARDING*
Affiliation:
School of Mathematical Sciences, The University of Adelaide, South Australia 5005, Australia email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a Rayleigh–Ritz method for the approximation of fluid flow in a curved duct, including the secondary cross-flow, which is well known to develop for nonzero Dean numbers. Having a straightforward method to estimate the cross-flow for ducts with a variety of cross-sectional shapes is important for many applications. One particular example is in microfluidics where curved ducts with low aspect ratio are common, and there is an increasing interest in nonrectangular duct shapes for the purpose of size-based cell separation. We describe functionals which are minimized by the axial flow velocity and cross-flow stream function which solve an expansion of the Navier–Stokes model of the flow. A Rayleigh–Ritz method is then obtained by computing the coefficients of an appropriate polynomial basis, taking into account the duct shape, such that the corresponding functionals are stationary. Whilst the method itself is quite general, we describe an implementation for a particular family of duct shapes in which the top and bottom walls are described by a polynomial with respect to the lateral coordinate. Solutions for a rectangular duct and two nonstandard duct shapes are examined in detail. A comparison with solutions obtained using a finite-element method demonstrates the rate of convergence with respect to the size of the basis. An implementation for circular cross-sections is also described, and results are found to be consistent with previous studies.

Type
Research Article
Copyright
© 2019 Australian Mathematical Society 

References

Alnæs, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. E. and Wells, G. N., “The FEniCS project version 1.5”, Arch. Numer. Softw. 3 (2015) 923; doi:10.11588/ans.2015.100.20553.Google Scholar
Brown, R. E. and Stone, M. A., “On the use of polynomial series with the Rayleigh–Ritz method”, Compos. Struct. 39 (1997) 191196; doi:10.1016/S0263-8223(97)00113-X.Google Scholar
Dean, W. R. XVI, “Note on the motion of fluid in a curved pipe”, Lond. Edinb. Dublin Philos. Mag. J. Sci. 4 (1927) 208223; doi:10.1080/14786440708564324.Google Scholar
Dean, W. R. and Hurst, J. M., “Note on the motion of fluid in a curved pipe”, Mathematika 6 (1959) 7785; doi:10.1112/S0025579300001947.Google Scholar
Di Carlo, D., “Inertial microfluidics”, Lab Chip 9 (2009) 30383046; doi:10.1039/B912547G.Google Scholar
Fan, Y., Tanner, R. I. and Phan-Thien, N., “Fully developed viscous and viscoelastic flows in curved pipes”, J. Fluid Mech. 440 (2001) 327357; doi:10.1017/S0022112001004785.Google Scholar
Galdi, G. P. and Robertson, A. M., “On flow of a Navier–Stokes fluid in curved pipes. Part I. Steady flow”, Appl. Math. Lett. 18 (2005) 11161124; doi:10.1016/j.aml.2004.11.004.Google Scholar
Geislinger, T. M. and Franke, T., “Hydrodynamic lift of vesicles and red blood cells in flow – From Fåhræus and Lindqvist to microfluidic cell sorting”, Adv. Colloid Interface. Sci. 208 (2014) 161176; doi:10.1016/j.cis.2014.03.002.Google Scholar
Georgoulis, E. H. and Houston, P., “Discontinuous Galerkin methods for the biharmonic problem”, IMA J. Numer. Anal. 29 (2009) 573594; doi:10.1093/imanum/drn015.Google Scholar
Germano, M., “The Dean equations extended to a helical pipe flow”, J. Fluid Mech. 203 (1989) 289305; doi:10.1017/S0022112089001473.Google Scholar
Harding, B. and Stokes, Y. M., “Fluid flow in a spiral microfluidic duct”, Phys. Fluids 30 (2018) 042007; doi:10.1063/1.5026334.Google Scholar
Hood, K., Lee, S. and Roper, M., “Inertial migration of a rigid sphere in three-dimensional Poiseuille flow”, J. Fluid Mech. 765 (2015) 452479; doi:10.1017/jfm.2014.739.Google Scholar
Liew, K. M. and Wang, C. M., “pb-2 Rayleigh–Ritz method for general plate analysis”, Eng. Struct. 15 (1993) 5560; doi:10.1016/0141-0296(93)90017-X.Google Scholar
Martel, J. M. and Toner, M., “Particle focusing in curved microfluidic channels”, Sci. Rep. 3 (2013) 3340; doi:10.1038/srep03340.Google Scholar
Robertson, A. M. and Muller, S. J., “Flow of Oldroyd-B fluids in curved pipes of circular and annular cross-section”, Int. J. Non-Lin. Mech. 31 (1996) 120doi:10.1016/0020-7462(95)00040-2.Google Scholar
Wang, C. Y., “Stokes flow in a curved duct – A Ritz method”, Comput. Fluids 53 (2012) 145148; doi:10.1016/j.compfluid.2011.10.010.Google Scholar
Wang, C. Y., “Ritz method for slip flow in curved micro-ducts and application to the elliptic duct”, Meccanica 51 (2016) 10691076; doi:10.1007/s11012-015-0288-8.Google Scholar
Warkiani, M. E., Guan, G., Luan, K. B., Lee, W. C., Bhagat, A. A. S., Kant Chaudhuri, P., Tan, D. S.-W., Lim, W. T., Lee, S. C., Chen, P. C. Y., Lim, C. T. and Han, J., “Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells”, Lab Chip 14 (2014) 128137; doi:10.1039/C3LC50617G.Google Scholar
Yamamoto, K., Wu, X., Hyakutake, T. and Yanase, S., “Taylor–dean flow through a curved duct of square cross section”, Fluid Dyn. Res. 35 (2004) 6786; doi:10.1016/j.fluiddyn.2004.04.003.Google Scholar
Yanase, S., Goto, N. and Yamamoto, K., “Dual solutions of the flow through a curved tube”, Fluid Dyn. Res. 5 (1989) 191201; doi:10.1016/0169-5983(89)90021-X.Google Scholar