We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Eating and drinking difficulties are highly prevalent in the intellectual disability population and include all aspects of the eating and drinking process. This can include stable positioning and pacing the meal all the way through to safe swallowing. Dysphagia is a subset of wider eating and drinking difficulties, often seen in the intellectual disability population. Dysphagia presents as a difficulty chewing and swallowing. It is often the underlying cause of malnutrition, dehydration, weight loss, choking, and aspiration pneumonia, with risks to mental health, social isolation, dignity, and enjoyment. A deterioration in eating and drinking skills is often a symptom of a broader physical and mental health diagnosis. People with eating and drinking difficulties can also experience a cyclical decline in health and an increased risk of malnutrition and dehydration. In addition to eating and drinking difficulties this chapter covers surgical intervention requiring insertion of a gastric tube, the impact of medication on feeding, and strategies to manage eating and drinking difficulties.
On 19 January 2020, the first case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was identified in the United States, with the first cases in South Carolina confirmed on 06 March 2020. Due to initial limited testing capabilities and potential for asymptomatic transmission, it is possible that SARS-CoV-2 may have been present earlier than previously thought, while the immune status of at-risk populations was unknown. Saliva from 55 South Carolina emergency healthcare workers (EHCWs) was collected from September 2019 to March 2020, pre- and post-healthcare shifts, and stored frozen. To determine the presence of SARS-CoV-2-reactive antibodies, saliva-acquired post-shift was analysed by enzyme-linked immunosorbent assay (ELISA) with a repeat of positive or inconclusive results and follow-up testing of pre-shift samples. Two participants were positive for SARS-CoV-2 N/S1-reactive IgG, confirmed by follow-up testing, with S1 receptor binding domain (RBD)-specific IgG present in one individual. Positive samples were collected from medical students working in emergency medical services (EMSs) in October or November 2019. The presence of detectable anti-SARS-CoV-2 antibodies in 2019 suggests that immune responses to the virus existed in South Carolina, and the United States, in a small percentage of EHCWs prior to the earliest documented coronavirus disease 2019 (COVID-19) cases. These findings suggest the feasibility of saliva as a noninvasive tool for surveillance of emerging outbreaks, and EHCWs represent a high-risk population that should be the focus of infectious disease surveillance.
This chapter provides details of serological tests which can be used to detect viral antibodies or antigens in serum, saliva or urine (e.g. ELISA, EIA, IF, CFT, HAI, neutralisation, Western blot, line immunoassays and avidity tests). It details the utility of each test.
The current study aimed to investigate the effects of ageing on oral immunity using β-defensin (DEFB) 1/2 as a marker and evaluate the effects of curcumin (CUR) on these processes. The study sample included thirty male C57BL/6J mice divided into three groups based on the treatment method used. The young control (YC) and old control (OC) groups received 0·5 % methylcellulose-400 (CUR vehicle) orally for 5 days, whereas the CUR group of older mice received a CUR solution suspended in 0·5 % methylcellulose-400 (dose: 3·0 mg/kg body). DEFB1/2 and immune indicator levels were measured in the saliva and salivary glands post-treatment. The saliva volume and protein content were significantly reduced in the OC group compared with the YC group. CUR administration restored these parameters, decreased DEFB1 expression in the salivary gland and increased DEFB1/2 secretion and DEFB2 expression. These findings were supported by epigenetic gene regulation and partial cytokine activation from changes in WD40 repeat protein 5, TNF alpha and IL-1beta. CUR can partially restore age-related changes in oral immune responses and promote oral health, thereby preventing frailty in the older population through a nutritional therapeutic pathway.
The present study assessed if salivary crystallization pattern (ferning pattern formed as a result of the higher levels of salt content in the dried sample) could be used for estrus detection and for diagnosis of pregnancy/non-pregnancy in dairy cows. Saliva and blood samples were collected from non-pregnant cycling cows (Sahiwal breed; n = 20) on alternate days from the day of estrus till next estrus. Then, all the cows were inseminated and saliva and blood sampling were continued further for a period of 22 d post-insemination. Pregnancy diagnosis was carried out on day 45 post-insemination and eight cows were found to be pregnant. The salivary crystallization pattern and estradiol:progesterone ratio during estrous cycle and during pregnancy were compared among these cows. Six types of salivary crystallization patterns were discerned; distinct patterns such as branch-like, fern-like, fir-like and combinations of these. Fern-like pattern was observed in all the cows on the day of estrus (first measurement day) and furthermore, all of the cows that subsequently became pregnant had fern-like salivary crystallization pattern at the time of insemination. Saliva of all the pregnant cows showed branch-fir type of crystallization pattern on day 16 post-breeding while only 50% of non-pregnant cows showed this pattern on day 16 of estrous cycle. The appearance of fern-like pattern was positively and significantly related to estradiol:progesterone ratio (r = 0.86; P < 0.001). The findings were validated on a separate group of cycling cows (n = 32). We can conclude that salivary crystallization pattern might serve as a non-invasive and cost effective and easy-to-use cow-side tool for estrus detection and early pregnancy/non-pregnancy diagnosis in cows upon validation on a larger sample size.
As of March 2020, governments throughout the world implemented business closures, work from home policies, and school closures due to exponential increase of coronavirus disease 2019 (COVID-19) cases, leaving only essential workers being able to work on site. For most of the children and adolescent school closures during the first lockdown had significant physical and psychosocial consequences. Here, we describe a comprehensive Return to School program based on a behavior safety protocol combined with the use of saliva-based reverse transcriptase-polymerase chain reaction (RT-PCR) pooled screening technique to keep schools opened.
Methods:
The program had 2 phases: before school (safety and preparation protocols) and once at school (disease control program: saliva-based RT-PCR pooled screening protocol and contact tracing). Pooling: Aliquots of saliva from 24 individuals were pooled and 1 RT-PCR test was performed. If positive, the initial 24-pool was then retested (12 pools of 2). Individual RT-PCR tests from saliva samples from positive pools of 2 were performed to get an individual diagnosis.
Results:
From August 31 until December 20, 2020 (16-wk period) a total of 3 pools, and subsequent 3 individual diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease were reported (2 teachers and 1 staff).
Conclusion:
Until COVID-19 vaccine can be administered broadly to all-age children, saliva-based RT-PCR pooling testing is the missing piece we were searching for to keep schools opened.
A total of 80% of fibromyalgia (FM) population have reported poor sleep. In this regard, the pineal gland, involved in circadian rhythm processes as a key neuroendocrine organ which mainly synthesises and secretes melatonin, has never been studied before in this population. Therefore, this study aimed to evaluate the parenchyma pineal volume and its relation to sleep hours, sleep quality index and melatonin level at night. A total of 50 participants, 30 women with FM and 20 healthy control women underwent cranial magnetic resonance imaging. The total pineal volume, cyst pineal volume and parenchyma pineal volume were manually calculated in cubic millimetres. Also, the total pineal volume was estimated using Hasehawa method. Parenchyma pineal volume was significantly correlated with sleep hours (p-value = 0.041) and nocturnal melatonin level (p-value = 0.027). Moreover, there was also a non-significant correlation between parenchyma pineal volume and sleep quality index (p-value = 0.055). Furthermore, a mean parenchyma pineal volume of 102.00 (41.46) mm³ was observed, with a prevalence of 29.60% cyst in FM group. This is the first study that has reported pineal gland volumes, cyst prevalence and correlative relationships between parenchyma pineal volume and sleep hours and melatonin levels in women with FM.
Masturbation is a common sexual practice in men, and saliva is often used as a lubricant during masturbation by men who have sex with men. However, the role of saliva use during masturbation in the transmission of chlamydia is still unclear. We developed population-level, susceptible-infected-susceptible compartmental models to explore the role of saliva use during masturbation on the transmission of chlamydia at multiple anatomical sites. In this study, we simulated both solo masturbation and mutual masturbation. Our baseline model did not include masturbation but included transmission routes (anal sex, oral-penile sex, rimming, kissing and sequential sexual practices) we have previously validated (model 1). We added masturbation to model 1 to develop the second model (model 2). We calibrated the model to five clinical datasets separately to assess the effects of masturbation on the prevalence of site-specific infection. The inclusion of masturbation (model 2) significantly worsened the ability of the models to replicate the prevalence of C. trachomatis. Using model 2 and the five data sets, we estimated that saliva use during masturbation was responsible for between 3.9% [95% confidence interval (CI) 2.0–6.8] and 6.2% (95% CI 3.8–10.5) of incident chlamydia cases at all sites. Our models suggest that saliva use during masturbation is unlikely to play a major role in chlamydia transmission between men, and even if it does have a role, about one in seven cases of urethral chlamydia might arise from masturbation.
Current COVID-19 guidelines recommend symptom-based screening and regular nasopharyngeal (NP) testing for healthcare personnel in high-risk settings. We sought to estimate case detection percentages with various routine NP and saliva testing frequencies.
Design:
Simulation modeling study.
Methods:
We constructed a sensitivity function based on the average infectiousness profile of symptomatic coronavirus disease 2019 (COVID-19) cases to determine the probability of being identified at the time of testing. This function was fitted to reported data on the percent positivity of symptomatic COVID-19 patients using NP testing. We then simulated a routine testing program with different NP and saliva testing frequencies to determine case detection percentages during the infectious period, as well as the presymptomatic stage.
Results:
Routine biweekly NP testing, once every 2 weeks, identified an average of 90.7% (SD, 0.18) of cases during the infectious period and 19.7% (SD, 0.98) during the presymptomatic stage. With a weekly NP testing frequency, the corresponding case detection percentages were 95.9% (SD, 0.18) and 32.9% (SD, 1.23), respectively. A 5-day saliva testing schedule had a similar case detection percentage as weekly NP testing during the infectious period, but identified ~10% more cases (mean, 42.5%; SD, 1.10) during the presymptomatic stage.
Conclusion:
Our findings highlight the utility of routine noninvasive saliva testing for frontline healthcare workers to protect vulnerable patient populations. A 5-day saliva testing schedule should be considered to help identify silent infections and prevent outbreaks in nursing homes and healthcare facilities.
BPIFA2 (PSP, SPLUNC2, C20orf70) is a major salivary protein of uncertain physiological function. BPIFA2 is downregulated in salivary glands of spontaneously hypertensive rats, pointing to a role in blood pressure regulation. This study used a novel Bpifa2 knockout mouse model to test the role of BPIFA2 in sodium preference and blood pressure. Blood pressure did not differ between wild-type male and female mice but was significantly lower in male knockout mice compared to male wild-type mice. In contrast, blood pressure was increased in female knockout mice compared to female wild-type mice. Female wild-type mice showed a significant preference for 0.9% saline compared to male mice. This difference was reduced in the knockout mice. BPIFA2 is an LPS-binding protein but it remains to be determined if the reported effects are mediated by the LPS-binding activity of BPIFA2.
Epigenetic age acceleration (AA) has been associated with adverse environmental exposures and many chronic conditions. We estimated, in the NINFEA birth cohort, infant saliva epigenetic age, and investigated whether parental socio-economic position (SEP) and pregnancy outcomes are associated with infant epigenetic AA. A total of 139 saliva samples collected at on average 10.8 (range 7–17) months were used to estimate Horvath’s DNA methylation age. Epigenetic AA was defined as the residual from a linear regression of epigenetic age on chronological age. Linear regression models were used to test the associations of parental SEP and pregnancy outcomes with saliva epigenetic AA. A moderate positive association was found between DNA methylation age and chronological age, with the median absolute difference of 6.8 months (standard deviation [SD] 3.9). The evidence of the association between the indicators of low SEP and epigenetic AA was weak; infants born to unemployed mothers or with low education had on average 1 month higher epigenetic age than infants of mothers with high education and employment (coefficient 0.78 months, 95% confidence intervals [CIs]: −0.79 to 2.34 for low/medium education; 0.96, 95% CI: −1.81 to 3.73 for unemployment). There was no evidence for association of gestational age, birthweight or caesarean section with infant epigenetic AA. Using the Horvath’s method, DNA methylation age can be fairly accurately predicted from saliva samples already in the first months of life. This study did not reveal clear associations between either pregnancy outcomes or parental socio-economic characteristics and infant saliva epigenetic AA.
The experiments described in this research communication compared cortisol concentrations in plasma and saliva samples collected from dairy cattle before and after an adrenocorticotropic hormone (ACTH) application. For that purpose, blood and saliva samples were collected from five dairy cows at determined time intervals before (490 min and down to 0 min) and after (10 min and up to 500 min) an ACTH application. Mean baseline cortisol concentrations were greater in plasma compared to saliva. The relative increases and decreases in plasma and salivary cortisol concentrations following ACTH were similar. After ACTH, we observed an increase in cortisol concentrations in plasma after 10 min and in saliva after 20 min. The time of peak concentrations after ACTH were reached at 70 and 80 min for plasma and saliva, respectively. After peak concentrations, values steadily declined and returned to baseline values at 169 ± 15 min in plasma and 170 ± 14 min in saliva. Ratios between salivary and plasma cortisol concentrations were on average 0.09 and did not change substantially during the ACTH challenge. There was a strong positive relationship between salivary and plasma cortisol concentrations. These results indicate that salivary cortisol concentrations can be a good indicator of ACTH-induced plasma cortisol concentrations in dairy cattle.
The main aim of this study was to confirm the relationship between executive performance and salivary alpha-amylase (SAA) activity in a sample of 64 healthy children (39 boys), and compare it to the association of SAA output and salivary flow rate (SFR). Executive functioning was assessed via fluency, trail-making, rings and inhibition tasks from the Batería de Evaluación Neuropsicológica de la Función Ejecutiva en Niños [Battery of Neuropsychological Assessment for Executive Function in Children] (ENFEN), merged into an ENFEN total score. SAA activity, output, and SFR were measured at baseline, one minute before, and one minute after the end of a neuropsychological testing session. Our results confirmed a direct, linear and significant association between SAA activity and executive functioning, r(64) = .351, p < .05, and extended it to SAA output, r(64) =.431, p < .05. The mean level of SAA output was the best predictor of executive functioning (β = .431, p < .05) and explained 18.2 % of the variance in ENFEN total score. In sum, and compared to SAA activity, measuring SAA output may be a more precise and indirect marker to assess executive functioning in children.
Estrus synchronization is important for optimal management of gilt reproduction in pig farms. Hormonal treatments, such as synthetic progestogens, are used on a routine basis, but there is a growing demand for non-hormonal alternative breeding tools. Before puberty, gilts exhibit a ‘waiting period,’ related to the ovarian development and gonadotrophin secretions, during which external stimulations, such as boar exposure, could induce and synchronize first ovulation. Practical non-invasive tools for identification of this period in farms are lacking. During this period, urinary oestrone levels are high, but urine sampling is difficult in group-housed females. The aim of this work was to search for specific biomarkers of the ‘waiting period’ in saliva and urine. In total, nine 144- to 147-day-old Large White gilts were subjected to trans-abdominal ultrasonography three times a week for 5 weeks until puberty detection (week –5 to week –1 before puberty). Urine and saliva samples were collected for oestrone assay to detect the ‘waiting period’ and for metabolome analysis using 1H-nuclear magnetic resonance spectroscopy to detect potential biomarkers of the ‘waiting period.’ Gilts were slaughtered 7 days after puberty detection for puberty confirmation. Results were consistent with ultrasonography data for six gilts. Urine and saliva samples from these six gilts were analyzed. Urinary estrone concentration significantly increased 2 weeks before puberty detection. Metabolome analysis of urine samples allowed the identification of 78 spectral bins, among them, 42 low-molecular-weight metabolites were identified. Metabolome analysis of salivary samples allowed the identification of 59 spectral bins, among them, 23 low-molecular-weight metabolites were detected and 17 were identified. No potential biomarker was identified in urinary samples. In saliva, butyrate and 2HOvalerate, 5.79 ppm (putatively uridine), formate, malonate and propionate could be biomarker candidates to ascertain the pre-puberty period in gilt reproduction. These results confirm that non-invasive salivary samples could allow the identification of the physiological status of the gilts and presumably the optimal time for application of the boar effect. This could contribute to synchronize puberty onset and hence to develop non-hormonal breeding tools.
Pharyngocutaneous fistula is a cause of significant morbidity following laryngectomy. Routine use of salivary bypass tubes during laryngectomy has been proposed to reduce the incidence of fistulae and neopharyngeal strictures.
Method:
Following a systematic search of Embase, Medline and Cochrane databases (1946 – current), included articles were assessed for bias according to the Cochrane Handbook for Systematic Reviews of Interventions.
Results:
Three case–control trials showed reduced pharyngocutaneous fistula rates with the use of salivary bypass tubes; six case series reported widely varied fistula rates. With regards to stricture rates, the largest case–control trial found no improvement with salivary bypass tube use. No fatal adverse events were observed among the 204 patients who received a salivary bypass tube.
Conclusion:
Low-level evidence suggests salivary bypass tubes may reduce the incidence of fistula in high-risk patient groups. A robust randomised controlled trial, or large, multicentre cohort studies, are needed to further examine this intervention.
Human strongyloidiasis is caused by helminth Strongyloides stercoralis. It has a worldwide distribution, often neglected and cause of severe morbidity. The parasitological diagnosis is hindered by the low and irregular amount of larvae in feces. The goal of the present study was to detect IgG and IgG immune complex using conventional serum samples and saliva as alternative samples. We collected samples from 60 individuals, namely: group I composed of 30 healthy individuals; and group II composed of 30 individuals eliminating S. stercoralis larvae in feces. We calculated the area under the curve, general index of diagnostic accuracy, Kappa index and determined the correlations between different diagnostic tests. The detection of IgG levels was performed by an immunoenzymatic assay with alkaline extract of S. venezuelensis larvae as antigen. Positivity of anti-S. stercoralis IgG in serum samples from group I was 3·3%, and from group II 93·3%. The detection of immune complex indicated that group I exhibited 3·3% and group II 56·7%. In the saliva samples, IgG detection was 26·7% for group I and 43·3% for group II. Immune complex was detected in 20% of group I, and 30% of group II. IgG immune complex in conventional serum samples and saliva as alternative samples can be considered biomarkers for the diagnosis of active strongyloidiasis.
This Research Communication describes, for the first time, the detection of HSP70 in saliva of dairy cows. Thermal stress is a major environmental stress that limits animal growth, metabolism, and productivity. The cellular response to heat stress involves the synthesis of heat shock proteins (HSPs), presumably to protect the functional stability of cells at increasing temperatures. HSP70 has been found to be present in cattle blood serum and may also be present in other secretory fluids, such as saliva, as already observed in humans. The aim of this study was to detect heat shock protein HSP70 in bovine saliva. Saliva samples were taken from higher- (n = 5) and lower milk producing (n = 5) Holstein-Friesian cows in summer and in winter for the detection of HSP70. HSP70 concentrations were assayed using the ELISA technique. Salivary HSP70 concentrations ranged from 0·524 to 12·174 ng/ml in cows. Higher salivary HSP70 concentrations were significantly associated with higher milk production and higher environmental temperature, but not with rectal temperature.
Salivary glycoprotein profiles, obtained after boronic acid enrichment, were studied for the first time in pigs in order to search for specific overall alterations related to acute inflammatory condition. Five healthy pigs and five pigs suffering from rectal prolapse were used, and the levels of acute phase proteins were measured to determine the degree of inflammation of the animals. The enriched glycoprotein profiles, achieved by two-dimensional gel electrophoresis (2DE) were statistically evaluated and spots that appeared differentially regulated between states were subjected to MS analysis for protein identification. Spots from three unique proteins were identified: carbonic anhydrase VI (CA VI), α-1-antichymotrypsin and haptoglobin (Hp). CA VI appeared as two adjacent horizontal spot trains in the glycoprotein profile of healthy animals in its regular isoelectric points (pI). One spot of α-1-antichymotrypsin was found in saliva from pigs with rectal prolapse in an unusual basic pI, and was considered as a breakdown product. Hp was identified as several spot trains in saliva from pigs with rectal prolapse in an unusual alkaline pI and was consequently further investigated. SDS-PAGE and 2DE of paired serum and saliva samples combined with Western blot analysis showed that the unusual Hp position observed in saliva samples was absent in serum. Furthermore, N-glycans from serum and saliva Hp glycopatterns were evaluated from SDS-PAGE Hp bands and showed that the serum N-glycan distribution in Hp β-chain was comparable in quantity and quality in both groups of animals. In saliva, no Hp β-chain derived N-glycans could unambiguously be identified from this sample set, thus needing further detailed investigations in the future.
Podisus distinctus (Hemiptera: Pentatomidae) is a zoophytophagous insect with significant potential for use as a biological control agent in agriculture and forestry because their nymphs and adults actively prey on diverse insect species. The saliva of this insect possesses active substances that cause paralysis and death of the prey. As the first step in identifying compounds of P. distinctus saliva, this study describes the ultrastructure of the salivary glands of this predator. The salivary system of P. distinctus possesses a pair of main salivary glands with a short anterior lobe, a long posterior lobe, and a pair of tubular accessory glands. The main salivary gland of P. distinctus has no associated muscles, suggesting that the saliva-release mechanism occurs with the help of certain thorax muscles. The main salivary gland epithelium has a single layer of cells (varying from cubical to columnar) with cytoplasm rich in rough endoplasmic reticulum, spherical granules of different sizes, a nucleus with a predominance of decondensed chromatin, and nucleolus. The apical cell region has a few short microvilli and the basal region has plasma membrane infoldings. The epithelium of the accessory salivary glands possesses a single-layered epithelium of cubic cells delimiting a narrow lumen. The apical cell region has a high density of microvilli and pleomorphic mitochondria, whereas the central cell region is rich in rough endoplasmic reticulum with a well-developed nucleus and decondensed chromatin. The basal cell region is characterized by the presence of several basal plasma membrane infoldings associated with mitochondria and numerous openings to the hemocoel forming large channels. The ultrastructural characteristics suggest that the main salivary glands and accessory salivary glands play a vital role in protein synthesis for saliva production and that the accessory glands are involved in transport of materials of the hemolymph.
Secretory IgA in the saliva is essential for protection from mucosally transmitted pathogens and maintaining homeostasis at mucosal surfaces of the oral cavity. Expression of submandibular gland polymeric Ig receptor (pIgR) is essential for IgA secretion. In the present study, we investigated the influence of indigestible carbohydrates on IgA production in the salivary gland and saliva. Five-week-old rats were fed a fibre-free diet (control), or a diet with 5 % (w/w) fructo-oligosaccharide (FOS) or a combination of 2·5 % (w/w) polydextrose (PDX) and 2·5 % (w/w) lactitol for 21-d. IgA concentrations in the caecal digesta, submandibular gland tissue, and saliva in the FOS and PDX+lactitol diet groups were significantly higher than those in the control group (P< 0·05). The increase in IgA in the submandibular gland tissue was confirmed using immunohistochemical analysis. However, the IgA concentrations of serum did not differ between the FOS or PDX+lactitol groups and the control group (P= 0·5). In the FOS and PDX+lactitol groups, the pIgR mRNA (pIgR/β-actin) expression level in the submandibular gland tissue was significantly higher than that in the control group (P< 0·05). The present study suggests that indigestible carbohydrates play an important role in the increase in IgA concentrations in the submandibular gland tissue, saliva, and caecal digesta.