We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Irregular cusps of an orthogonal modular variety are cusps where the lattice for Fourier expansion is strictly smaller than the lattice of translation. The presence of such a cusp affects the study of pluricanonical forms on the modular variety using modular forms. We study toroidal compactification over an irregular cusp, and clarify there the cusp form criterion for the calculation of Kodaira dimension. At the same time, we show that irregular cusps do not arise frequently: besides the cases when the group is neat or contains $-1$, we prove that the stable orthogonal groups of most (but not all) even lattices have no irregular cusp.
We prove that the Kodaira dimension of the n-fold universal family of lattice-polarised holomorphic symplectic varieties with dominant and generically finite period map stabilises to the moduli number when n is sufficiently large. Then we study the transition of Kodaira dimension explicitly, from negative to nonnegative, for known explicit families of polarised symplectic varieties. In particular, we determine the exact transition point in the Beauville–Donagi and Debarre–Voisin cases, where the Borcherds
$\Phi _{12}$
form plays a crucial role.
Let X be a normal projective variety of dimension n and G an abelian group of automorphisms such that all elements of
$G\setminus \{\operatorname {id}\}$
are of positive entropy. Dinh and Sibony showed that G is actually free abelian of rank
$\le n - 1$
. The maximal rank case has been well understood by De-Qi Zhang. We aim to characterize the pair
$(X, G)$
such that
$\operatorname {rank} G = n - 2$
.
The symbolic analytic spread of an ideal $I$ is defined in terms of the rate of growth of the minimal number of generators of its symbolic powers. In this article, we find upper bounds for the symbolic analytic spread under certain conditions in terms of other invariants of $I$. Our methods also work for more general systems of ideals. As applications, we provide bounds for the (local) Kodaira dimension of divisors, the arithmetic rank, and the Frobenius complexity. We also show sufficient conditions for an ideal to be a set-theoretic complete intersection.
We prove a bound relating the volume of a curve near a cusp in a complex ball quotient $X=\mathbb{B}/\unicode[STIX]{x1D6E4}$ to its multiplicity at the cusp. There are a number of consequences: we show that for an $n$-dimensional toroidal compactification $\overline{X}$ with boundary $D$, $K_{\overline{X}}+(1-\unicode[STIX]{x1D706})D$ is ample for $\unicode[STIX]{x1D706}\in (0,(n+1)/2\unicode[STIX]{x1D70B})$, and in particular that $K_{\overline{X}}$ is ample for $n\geqslant 6$. By an independent algebraic argument, we prove that every ball quotient of dimension $n\geqslant 4$ is of general type, and conclude that the phenomenon famously exhibited by Hirzebruch in dimension 2 does not occur in higher dimensions. Finally, we investigate the applications to the problem of bounding the number of cusps and to the Green–Griffiths conjecture.
In this paper we prove that a smooth family of canonically polarized manifolds parametrized by a special (in the sense of Campana) quasi-projective variety is isotrivial.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.