Published online by Cambridge University Press: 28 November 2017
We prove a bound relating the volume of a curve near a cusp in a complex ball quotient $X=\mathbb{B}/\unicode[STIX]{x1D6E4}$ to its multiplicity at the cusp. There are a number of consequences: we show that for an $n$-dimensional toroidal compactification $\overline{X}$ with boundary $D$, $K_{\overline{X}}+(1-\unicode[STIX]{x1D706})D$ is ample for $\unicode[STIX]{x1D706}\in (0,(n+1)/2\unicode[STIX]{x1D70B})$, and in particular that $K_{\overline{X}}$ is ample for $n\geqslant 6$. By an independent algebraic argument, we prove that every ball quotient of dimension $n\geqslant 4$ is of general type, and conclude that the phenomenon famously exhibited by Hirzebruch in dimension 2 does not occur in higher dimensions. Finally, we investigate the applications to the problem of bounding the number of cusps and to the Green–Griffiths conjecture.