Let $G$ be a symmetrizable indefinite Kac-Moody group over $\mathbb{C}$. Let $\text{T}{{\text{r}}_{{{\Lambda }_{1}}\,,\ldots ,\,}}\text{T}{{\text{r}}_{{{\Lambda }_{2n-l}}}}$ be the characters of the fundamental irreducible representations of $G$, defined as convergent series on a certain part ${{G}^{\text{tr}-\text{alg}}}\,\subseteq \,G$. Following Steinberg in the classical case and Brüchert in the affine case, we define the Steinberg map $\chi \,:=\,\left( \text{T}{{\text{r}}_{{{\Lambda }_{1}},\ldots ,}}\text{T}{{\text{r}}_{{{\Lambda }_{2n-l}}}} \right)$ as well as the Steinberg cross section $C$, together with a natural parametrisation $\omega :{{\mathbb{C}}^{n}}\times {{\left( {{\mathbb{C}}^{\times }} \right)}^{n-l}}\to C$. We investigate the local behaviour of $\text{ }\!\!\chi\!\!\text{ }$ on $C$ near $\omega \left( \,\left( 0,\ldots 0 \right)\,\times \,\left( 1,\ldots ,1 \right)\, \right)$, and we show that there exists a neighborhood of $\left( 0,...,0 \right)\,\,\times \,\,\left( 1,...,1 \right)$, on which $\text{ }\!\!\chi\!\!\text{ }\,\circ \,\omega $ is a regular analytical map, satisfying a certain functional identity. This identity has its origin in an action of the center of $G$ on $C$.