Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T13:10:30.907Z Has data issue: false hasContentIssue false

The contributions of non-numeric dimensions to number encoding, representations, and decision-making factors

Published online by Cambridge University Press:  27 July 2017

Darko Odic*
Affiliation:
University of British Columbia, Vancouver, British Columbia, V6T 1Z4, [email protected]://www.odic.psych.ubc.ca

Abstract

Leibovich et al. suggest that congruency effects in number perception (biases towards smaller, denser, etc., dots) are evidence for the number's dependence on these dimensions. I argue that they fail to differentiate between effects at three distinct levels of number perception – encoding, representations, and decision making – and that differentiating between these allows the number to be independent from, but correlated with, non-numeric dimensions.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anobile, G., Cicchini, G. M. & Burr, D. C. (2014) Separate mechanisms for perception of numerosity and density. Psychological Science 25(1):265–70. doi: 10.1177/0956797613501520.Google Scholar
Burr, D. & Ross, J. (2008) A visual sense of number. Current Biology 18(6):425–28. doi: 10.1016/j.cub.2008.02.052.CrossRefGoogle ScholarPubMed
Cantrell, L. & Smith, L. B. (2013) Open questions and a proposal: A critical review of the evidence on infant numerical abilities. Cognition 128(3):331–52. doi: 10.1016/j.cognition.2013.04.008.Google Scholar
Dakin, S. C., Tibber, M. S., Greenwood, J. A., Kingdom, F. A. A. & Morgan, M. J. (2011) A common visual metric for approximate number and density. Proceedings of the National Academy of Sciences of the United States of America 108(49):19552–57. doi: 10.1073/Pnas.1113195108.Google Scholar
Hurewitz, F., Gelman, R. & Schnitzer, B. (2006) Sometimes area counts more than number. Proceedings of the National Academy of Sciences of the United States of America 103(51):19599–604. doi: 10.1073/pnas.0609485103.Google Scholar
Lourenco, S. F. & Longo, M. R. (2010) General magnitude representation in human infants. Psychological Science 21:873–81.Google Scholar
Odic, D. (2017) Children's intuitive sense of number develops independently of their perception of area, density, length, and time. Developmental Science. 2017:e12533. doi: 10.1111/desc.12533 Google Scholar
Odic, D., Libertus, M. E., Feigenson, L. & Halberda, J. (2013) Developmental change in the acuity of approximate number and area representations. Developmental Psychology 49(6):1103–12.Google Scholar
Odic, D., Lisboa, J. V., Eisinger, R., Olivera, M. G., Maiche, A. & Halberda, J. (2016) Approximate number and approximate time discrimination each correlate with school math abilities in young children. Acta Psychologica 163:1726.Google Scholar
Picon, E. & Odic, D. (in preparation) Visual illusions reveal the primitives of number perception.Google Scholar
Tudusciuc, O. & Nieder, A. (2007) Neuronal population coding of continuous and discrete quantity in the primate posterior parietal cortex. Proceedings of the National Academy of Sciences of the United States of America 104(36):14513–18. doi: 10.1073/pnas.0705495104.Google Scholar
Van Opstal, F. & Verguts, T. (2013) Is there a generalized magnitude system in the brain? Behavioral, neuroimaging, and computational evidence. Frontiers in Psychology 4:435.Google Scholar
Vuilleumier, P., Armony, J. L., Driver, J. & Dolan, R. J. (2003) Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nature Neuroscience 6(6):624–31. doi: 10.1038/nn1057.Google Scholar
Walsh, V. (2003) A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences 7(11):483–88. doi: 10.1016/j.tics.2003.09.002.Google Scholar