Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T02:28:13.210Z Has data issue: false hasContentIssue false

The evolvement of discrete representations from continuous stimulus properties: A possible overarching principle of cognition

Published online by Cambridge University Press:  27 July 2017

Nurit Gronau*
Affiliation:
Department of Psychology and Cognitive Science Studies, The Open University of Israel, Raanana 4353701, [email protected]://www.openu.ac.il/personal_sites/nurit-gronau/

Abstract

Leibovich et al. propose that non-symbolic numerosity abilities develop from the processing of more basic, continuous magnitudes such as size, area, and density. Here I review similar arguments arising in the visual perception field and further propose that the evolvement of discrete representations from continuous stimulus properties may be a fundamental characteristic of cognitive development.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre, G. K., Zarahn, E. & D'esposito, M. (1998) An area within human ventral cortex sensitive to “building” stimuli: Evidence and implications. Neuron 21(2):373–83.Google Scholar
Behrmann, M. & Plaut, D. C. (2013) Distributed circuits, not circumscribed centers, mediate visual recognition. Trends in Cognitive Sciences 17(5):210–19.Google Scholar
Behrmann, M. & Plaut, D. C. (2014) Bilateral hemispheric processing of words and faces: Evidence from word impairments in prosopagnosia and face impairments in pure alexia. Cerebral Cortex 24:1102–18. doi: 10.1093/cercor/bhs390.Google Scholar
Chao, L. L., Haxby, J. V. & Martin, A. (1999) Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nature Neuroscience 2(10):913–19.Google Scholar
Cohen Kadosh, K., Cohen Kadosh, R., Dick, F. & Johnson, M. H. (2010) Developmental changes in effective connectivity in the emerging core face network. Cerebral Cortex 21:1389–94. doi: 10.1093/cercor/bhq215.Google Scholar
Connolly, A. C., Guntupalli, J. S., Gors, J., Hanke, M., Halchenko, Y. O., Wu, Y. C., Abdi, H. & Haxby, J. V. (2012) The representation of biological classes in the human brain. Journal of Neuroscience 32:2608–18.Google Scholar
Downing, P. E., Jiang, Y., Shuman, M. & Kanwisher, N. (2001) A cortical area selective for visual processing of the human body. Science 293(5539):2470–73.Google Scholar
Dundas, E., Plaut, D. & Behrmann, M. (2013) The joint development of hemispheric lateralization for words and faces. Journal of Experimental Psychology: General 142(2):348–58. doi: 10.1037/a0029503.Google Scholar
Dundas, E., Plaut, D. C. & Behrmann, M. (2014) An ERP investigation of the co-development of hemispheric lateralization of face and word recognition. Neuropsychologia 61:315–23.Google Scholar
Epstein, R. & Kanwisher, N. (1998) A cortical representation of the local visual environment. Nature 392(6676):598601.Google Scholar
Fiez, J. A. & Petersen, S. E. (1998) Neuroimaging studies of word reading. Proceedings of the National Academy of Sciences of the United States of America 95(3):914–21.Google Scholar
Gabay, S., Kalanthroff, E., Henik, A. & Gronau, N. (2016) Conceptual size representation in ventral visual cortex. Neuropsychologia 81:198206.Google Scholar
Gabay, S., Leibovich, T., Henik, A. & Gronau, N. (2013) Size before numbers: Conceptual size primes numerical value. Cognition 129(1):1823.Google Scholar
Gathers, A. D., Bhatt, R. S., Corbly, C., Farley, A. & Joseph, J. E. (2004) Developmental shifts in cortical loci for face and object recognition. NeuroReport 15:1549–53. doi: 10.1097/01.wnr.0000133299.84901.86.Google Scholar
Germine, L. T., Duchaine, B. & Nakayama, K. (2011) Where cognitive development and aging meet: Face learning ability peaks after age 30. Cognition 118:201–10. doi: 10.1016/j.cognition.2010.11.002.Google Scholar
Goren, C. C., Sarty, M. & Wu, P. Y. (1975) Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics 56(4):544–49.CrossRefGoogle ScholarPubMed
Grill-Spector, K. & Weiner, K. S. (2014) The functional architecture of the ventral temporal cortex and its role in categorization. Nature Reviews Neuroscience 15(8):536–48.Google Scholar
Hasson, U., Levy, I., Behrmann, M., Hendler, T. & Malach, R. (2002) Eccentricity bias as an organizing principle for human high order object areas. Neuron 34:479–90.Google Scholar
Hubel, D. H. & Wiesel, T. N. (1977) Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London, Series B 198:159.Google Scholar
Huth, A. G., Nishimoto, S., Vu, A. T. & Gallant, J. L. (2012) A continuous semantic space describes the representation of thousands of object and action categories across the human brain. Neuron 76(6):1210–24.Google Scholar
Johnson, M. H., Dziurawiec, S., Ellis, H. & Morton, J. (1991) Newborns' preferential tracking of face-like stimuli and its subsequent decline. Cognition 40(1):119.Google Scholar
Kanwisher, N. (2010) Functional specificity in the human brain: A window into the functional architecture of the mind. Proceedings of the National Academy of Sciences of the United States of America 107(25):11163–70.Google Scholar
Kanwisher, N. G., McDermott, J. & Chun, M. M. (1997) The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience 17:4302–11.Google Scholar
Konkle, T. & Oliva, A. (2012) A real-world size organization of object responses in occipitotemporal cortex. Neuron 74(6):1114–24. doi: 10.1016/j.neuron.2012.04.036.Google Scholar
Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., Tanaka, K. & Bandettini, P. A. (2008) Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60:1126–41.Google Scholar
Leroux, G., Spiess, J., Zago, L., Rossi, S., Lubin, A., Turbelin, M.-R., Mazoyer, B., Tzourio-Mazoyer, N., Houdé, O. & Joliot, M. (2009) Adult brains don't fully overcome biases that lead to incorrect performance during cognitive development: An fMRI study in young adults completing a Piaget-like task. Developmental Science 12(2):326–38. doi: 10.1111/j.1467-7687.2008.00785.x.Google Scholar
Levy, I., Hasson, U., Avidan, G., Hendler, T. & Malach, R. (2001) Center-periphery organization of human object areas. Nature Neuroscience 4:533–39.Google Scholar
Maguire, E. A., Frith, C. D., Burgess, N., Donnett, J. G. & O'Keefe, J. (1998) Knowing where things are: Parahippocampal involvement in encoding object locations in virtual large-scale space. Journal of Cognitive Neuroscience 10(1):6176.Google Scholar
McCarthy, G., Puce, A., Gore, J. C. & Allison, T. (1997) Face-specific processing in the human fusiform gyrus. Journal of Cognitive Neuroscience 9:605–10.Google Scholar
O'Hearn, K., Schroer, E., Minshew, N. & Luna, B. (2010) Lack of developmental improvement on a face memory task during adolescence in autism. Neuropsychologia 48:3955–60. doi: 10.1016/j.neuropsychologia.2010.08.024.Google Scholar
Pinel, P., Piazza, M., Le Bihan, D. & Dehaene, S. (2004) Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron 41(6):983–93. doi: 10.1016/S0896-6273(04)00107-2.Google Scholar
Puce, A., Allison, T., Asgari, M., Gore, J. C. & McCarthy, G. (1996) Differential sensitivity of human visual cortex to faces, letterstrings, and textures: A functional magnetic resonance imaging study. Journal of Neuroscience 16:5205–15. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8756449.CrossRefGoogle ScholarPubMed
Scherf, K. S., Behrmann, M., Humphreys, K. & Luna, B. (2007) Visual category-selectivity for faces, places and objects emerges along different developmental trajectories. Developmental Science 10:F1530. doi: 10.1111/j.1467-7687.2007.00595.x.Google Scholar
Shakeshaft, N. G. & Plomin, R. (2015) Genetic specificity of face recognition. Proceedings of the National Academy of Sciences of the United States of America 112(41):12887–92. doi: 10.1073/pnas.1421881112.Google Scholar
Walsh, V. (2003) A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences 7(11):483–88. doi: 10.1016/j.tics.2003.09.002.CrossRefGoogle ScholarPubMed
Wilmer, J. B., Germine, L., Chabris, C. F., Chatterjee, G., Williams, M., Loken, E., Nakayama, K. & Duchaine, B. (2010) Human face recognition ability is specific and highly heritable. Proceedings of the National Academy of Sciences of the United States of America 107(11):5238–41.Google Scholar
Yovel, G. & Kanwisher, N. (2004) Face perception: Domain specific, not process specific. Neuron 44:889–98.Google Scholar
Zhu, Q., Song, Y., Hu, S., Li, X., Tian, M., Zhen, Z., Dong, Q., Kanwisher, N. & Liu, J. (2010) Heritability of the specific cognitive ability of face perception. Current Biology 20(2):137–42.Google Scholar