Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T03:45:32.318Z Has data issue: false hasContentIssue false

Brain mechanisms of acoustic communication in humans and nonhuman primates: An evolutionary perspective

Published online by Cambridge University Press:  15 May 2014

Hermann Ackermann
Affiliation:
Neurophonetics Group, Centre for Neurology – General Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, D-72076 Tuebingen, Germany. [email protected]/neurophonetik
Steffen R. Hage
Affiliation:
Neurobiology of Vocal Communication Research Group, Werner Reichardt Centre for Integrative Neuroscience, and Institute for Neurobiology, Department of Biology, University of Tuebingen, D-72076 Tuebingen, Germany. [email protected]
Wolfram Ziegler
Affiliation:
Clinical Neuropsychology Research Group, City Hospital Munich-Bogenhausen, D-80992 Munich, and Institute of Phonetics and Speech Processing, Ludwig-Maximilians-University, D-80799 Munich, Germany. [email protected]

Abstract

Any account of “what is special about the human brain” (Passingham 2008) must specify the neural basis of our unique ability to produce speech and delineate how these remarkable motor capabilities could have emerged in our hominin ancestors. Clinical data suggest that the basal ganglia provide a platform for the integration of primate-general mechanisms of acoustic communication with the faculty of articulate speech in humans. Furthermore, neurobiological and paleoanthropological data point at a two-stage model of the phylogenetic evolution of this crucial prerequisite of spoken language: (i) monosynaptic refinement of the projections of motor cortex to the brainstem nuclei that steer laryngeal muscles, presumably, as part of a “phylogenetic trend” associated with increasing brain size during hominin evolution; (ii) subsequent vocal-laryngeal elaboration of cortico-basal ganglia circuitries, driven by human-specific FOXP2 mutations.;>This concept implies vocal continuity of spoken language evolution at the motor level, elucidating the deep entrenchment of articulate speech into a “nonverbal matrix” (Ingold 1994), which is not accounted for by gestural-origin theories. Moreover, it provides a solution to the question for the adaptive value of the “first word” (Bickerton 2009) since even the earliest and most simple verbal utterances must have increased the versatility of vocal displays afforded by the preceding elaboration of monosynaptic corticobulbar tracts, giving rise to enhanced social cooperation and prestige. At the ontogenetic level, the proposed model assumes age-dependent interactions between the basal ganglia and their cortical targets, similar to vocal learning in some songbirds. In this view, the emergence of articulate speech builds on the “renaissance” of an ancient organizational principle and, hence, may represent an example of “evolutionary tinkering” (Jacob 1977).

Type
Target Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, H. (2008) Cerebellar contributions to speech production and speech perception: Psycholinguistic and neurobiological perspectives. Trends in Neurosciences 31(6):265–72. doi: 10.1016/j.tins.2008.02.011.CrossRefGoogle ScholarPubMed
Ackermann, H., Hertrich, I., Daum, I., Scharf, G. & Spieker, S. (1997a) Kinematic analysis of articulatory movements in central motor disorders. Movement Disorders 12:1019–27.Google Scholar
Ackermann, H., Hertrich, I. & Ziegler, W. (2010) Dysarthria. In: The handbook of language and speech disorders, ed. Damico, J. S., Müller, N. & Ball, M. J., pp. 362–90. Wiley-Blackwell.Google Scholar
Ackermann, H., Hertrich, I., Ziegler, W., Bitzer, M. & Bien, S. (1996) Acquired dysfluencies following infarction of the left mesiofrontal cortex. Aphasiology 10:409–17.CrossRefGoogle Scholar
Ackermann, H., Konczak, J. & Hertrich, J. (1997b) The temporal control of repetitive articulatory movements in Parkinson's disease. Brain and Language 56:312–19.Google Scholar
Ackermann, H. & Riecker, A. (2010a) Cerebral control of motor aspects of speech production: Neurophysiological and functional imaging data. In: Speech motor control: New developments in basic and applied research, ed. Maassen, B. & van Lieshout, P., pp. 117–34. Oxford University Press.CrossRefGoogle Scholar
Ackermann, H. & Riecker, A. (2010b) The contribution(s) of the insula to speech production: A review of the clinical and functional imaging literature. Brain Structure and Function 214:419–33.Google Scholar
Ackermann, H. & Ziegler, W. (1992) Cerebellar dysarthria: A review. Fortschritte der Neurologie und Psychiatrie 60:2840. (German).CrossRefGoogle ScholarPubMed
Ackermann, H. & Ziegler, W. (1995) Akinetic mutism: A review of the literature. Fortschritte der Neurologie und Psychiatrie 63:5967. (German).CrossRefGoogle ScholarPubMed
Ackermann, H. & Ziegler, W. (2010) Brain mechanisms underlying speech motor control. In: The handbook of phonetic sciences, 2nd edition, ed. Hardcastle, W. J., Laver, J. & Gibbon, F. E., pp. 202–50. Wiley-Blackwell.Google Scholar
Ackermann, H. & Ziegler, W. (2013) A “birdsong perspective” on human speech production. In: Birdsong, speech, and language: Exploring the evolution of mind and brain, ed. Bolhuis, J. J. & Everaert, M., pp. 331–52. MIT Press.Google Scholar
Aitken, P. G. (1981) Cortical control of conditioned and spontaneous vocal behavior in rhesus monkeys. Brain and Language 13:171–84.Google Scholar
Aitken, P. G. & Wilson, W. A. Jr. (1979) Discriminative vocal conditioning in rhesus monkeys: Evidence for volitional control? Brain and Language 8:227–40.CrossRefGoogle ScholarPubMed
Albin, R. L., Young, A. B. & Penney, J. B. (1989) The functional anatomy of basal ganglia disorders. Trends in Neurosciences 12:366–75.CrossRefGoogle ScholarPubMed
Alcock, K. J., Passingham, R. E., Watkins, K. E. & Vargha-Khadem, F. (2000a) Oral dyspraxia in inherited speech and language impairment and acquired dysphasia. Brain and Language 75(1):1733. doi: 10.1006/brln.2000.2322.Google Scholar
Alcock, K. J., Passingham, R. E., Watkins, K. E. & Vargha-Khadem, F. (2000b) Pitch and timing abilities in inherited speech and language impairment. Brain and Language 75:3446.Google Scholar
Alexander, G. E., Crutcher, M. D. & DeLong, M. R. (1990) Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. In: The prefrontal cortex: Its structure, function and pathology, ed. Uylings, H. B. M., Eden, C. G. van, de Bruin, J. P. C., Corner, M. A. & Feenstra, M. G. P., pp. 119–46. Elsevier. (Elsevier Book Series on Neuroscience: Progress in Brain Research, vol. 85).Google Scholar
Arbib, M. A. (2006) The Mirror System Hypothesis on the linkage of action and language. In: Action to language via the mirror neuron system, ed. Arbib, M. A., pp. 347. Cambridge University Press.CrossRefGoogle Scholar
Arnold, K. & Zuberbühler, K. (2006) Semantic combinations in primate calls. Nature 441(7091):303.CrossRefGoogle ScholarPubMed
Arroyo, S., Lesser, R. P., Gordon, B., Uematsu, S., Hart, J., Schwerdt, P., Andreasson, K. & Fisher, R. S. (1993) Mirth, laughter, and gelastic seizures. Brain 116:757–80.CrossRefGoogle ScholarPubMed
Badgaiyan, R. D., Fischman, A. J. & Alpert, N. M. (2007) Striatal dopamine release in sequential learning. NeuroImage 38:549–56.Google Scholar
Bailey, P., von Bonin, G. & McCulloch, W. S. (1950) The isocortex of the chimpanzee. University of Illinois Press.Google Scholar
Bannan, N. (2012) Harmony and its role in human evolution. In: Music, language, and human evolution, ed. Bannan, N., pp. 288339. Oxford University Press.CrossRefGoogle Scholar
Banse, R. & Scherer, K. R. (1996) Acoustic profiles in vocal emotion expression. Journal of Personality and Social Psychology 70(3):614–36.CrossRefGoogle ScholarPubMed
Barnard, A. (2011) Social anthropology and human origins. Cambridge University Press.CrossRefGoogle Scholar
Barrett, J., Pike, G. B. & Paus, T. (2004) The role of the anterior cingulate cortex in pitch variation during sad affect. European Journal of Neuroscience 19:458–64.Google Scholar
Barney, A., Martelli, S., Serrurier, A. & Steele, J. (2012) Articulatory capacity of Neanderthals, a very recent and human-like fossil hominin. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 367:88102.Google Scholar
Barris, R. W. & Schuman, H. R. (1953) Bilateral anterior cingulate gyrus lesions: Syndrome of the anterior cingulate gyri. Neurology 3:4452.CrossRefGoogle ScholarPubMed
Basel-Vanagaite, L., Muncher, L., Straussberg, R., Pasmanik-Chor, M., Yahav, M., Rainshtein, L., Walsh, C. A., Magal, N., Taub, E., Drasinover, V., Shalev, H., Attia, R., Rechavi, G., Simon, A. J. & Shohat, M. (2006) Mutated nup62 causes autosomal recessive infantile bilateral striatal necrosis. Annals of Neurology 60:214–22.CrossRefGoogle ScholarPubMed
Beckers, G. J. L., Bolhuis, J. J., Okanoya, K. & Berwick, R. C. (2012) Birdsong neurolinguistics: Songbird context-free grammar claim is premature. NeuroReport 23:139–45.CrossRefGoogle ScholarPubMed
Bell, W. L., Davis, D. L., Morgan-Fisher, A. & Ross, E. D. (1990) Acquired aprosodia in children. Journal of Child Neurology 5:1926.Google Scholar
Belton, E., Salmond, C. H., Watkins, K. E., Vargha-Khadem, F. & Gadian, D. G. (2003) Bilateral brain abnormalities associated with dominantly inherited verbal and orofacial dyspraxia. Human Brain Mapping 18:194200.CrossRefGoogle ScholarPubMed
Bengtsson, S. L., Nagy, Z., Skare, S., Forsman, L., Forssberg, H. & Ullén, F. (2005) Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience 8:1148–50.CrossRefGoogle ScholarPubMed
Bermejo, M. & Omedes, A. (1999) Preliminary vocal repertoire and vocal communication of wild bonobos (Pan paniscus) at Lilungu (Democratic Republic of Congo). Folia Primatologica 70:328–57.Google Scholar
Berwick, R. C., Okanoya, K., Beckers, G. J. L. & Bolhuis, J. J. (2011) Songs to syntax: The linguistics of birdsong. Trends in Cognitive Sciences 15(3):113–21.Google Scholar
Bickerton, D. (2009) Adam's tongue: How humans made language, how language made humans. Hill & Wang.Google Scholar
Boë, L. J., Heim, J. L., Honda, K. & Maeda, S. (2002) The potential Neandertal vowel space was as large as that of modern humans. Journal of Phonetics 30:465–84.Google Scholar
Boesch, C. & Boesch-Achermann, H. (2000) The chimpanzees of the Taï Forest: Behavioural ecology and evolution. Oxford University Press.CrossRefGoogle Scholar
Bolhuis, J. J. & Everaert, M., eds. (2013) Birdsong, speech and language. Exploring the evolution of mind and brain. MIT Press.CrossRefGoogle Scholar
Bolhuis, J. J., Okanoya, K. & Skarff, C. (2010) Twitter evolution: Converging mechanisms in birdsong and human speech. Nature Reviews Neuroscience 11(11):747–59.Google Scholar
Botez, M. I. & Barbeau, A. (1971) Role of subcortical structures, and particularly of the thalamus, in the mechanisms of speech and language: A review. International Journal of Neurology 8:300–20.Google ScholarPubMed
Bouchard, K. E., Mesgarani, N., Johnson, K. & Chang, E. F. (2013) Functional organization of human sensorimotor cortex for speech articulation. Nature 495:327–32. doi:10.1038/nature11911.Google Scholar
Braak, H., Del Tredici, K., Rüb, U., de Vos, R. A. I., Jansen Steur, E. N. H. & Braak, E. (2003) Staging of brain pathology related to sporadic Parkinson's disease. Neurobiology of Aging 24:197211.Google Scholar
Brainard, M. S. & Doupe, A. J. (2002) What songbirds teach us about learning. Nature 417:351–58.CrossRefGoogle ScholarPubMed
Brandt, P. A. (2009) Music and how we became human – a view from cognitive semiotics: Exploring imaginative hypotheses. In: Communicative musicality: Exploring the basis of human companionship, ed. Malloch, S. & Trevarthen, C., pp. 3144. Oxford University Press.Google Scholar
Brendel, B., Hertrich, I., Erb, M., Lindner, A., Riecker, A., Grodd, W. & Ackermann, H. (2010) The contribution of mesiofrontal cortex to the preparation and execution of repetitive syllable productions: An fMRI study. NeuroImage 50:1219–30.Google Scholar
Brockelman, W. Y. & Schilling, D. (1984) Inheritance of stereotyped gibbon calls. Nature 312:634–36.CrossRefGoogle ScholarPubMed
Brotis, A. G., Kapsalaki, E. Z., Paterakis, K., Smith, J. R. & Fountas, K. N. (2009) Historic evolution of open cingulectomy and stereotactic cingulotomy in the management of medically intractable psychiatric disorders, pain and drug addiction. Stereotactic and Functional Neurosurgery 87:271–91.Google Scholar
Brown, J. W. (1988) Cingulate gyrus and supplementary motor correlates of vocalization in man. In: The physiological control of mammalian vocalization, ed. Newman, J. D., pp. 227–43. Plenum Press.CrossRefGoogle Scholar
Brown, S. (2000) The “musilanguage” model of music evolution. In: The origins of music, ed. Wallin, N. L., Merker, B. & Brown, S., pp. 271300. MIT Press.Google Scholar
Brown, S., Ngan, E. & Liotti, M. (2008) A larynx area in the human motor cortex. Cerebral Cortex 18:837–45.Google Scholar
Brown, S., Laird, A. R., Pfordresher, P. Q., Thelen, S. M., Turkeltaub, P. & Liotti, M. (2009) The somatotopy of speech: Phonation and articulation in the human motor cortex. Brain and Cognition 70:3141.Google Scholar
Brown, T. G. (1915) Note on the physiology of the basal ganglia and mid-brain of the anthropoid ape, especially in reference to the act of laughter. Journal of Physiology 49:195207.Google Scholar
Brumm, H., Voss, K., Köllmer, I. & Todt, D. (2004) Acoustic communication in noise: Regulation of call characteristics in a New World monkey. Journal of Experimental Biology 207(3):443–48.CrossRefGoogle Scholar
Burgoon, J. K., Floyd, K. & Guerrero, L. K. (2010) Nonverbal communication theories of interaction adaptation. In: The handbook of communication science, 2nd edition, ed. Berger, C. R., Roloff, M. E. & Roskos-Ewoldsen, D. R., pp. 93108. Sage.Google Scholar
Burling, R. (2005) The talking ape: How language evolved. Oxford University Press.Google Scholar
Butler, A. B. & Hodos, W. (2005) Comparative vertebrate neuroanatomy: Evolution and adaptation, 2nd edition. Wiley.Google Scholar
Call, J. & Tomasello, M., eds. (2007) The gestural communication of apes and monkeys. Erlbaum.Google Scholar
Calzavara, R., Mailly, P. & Haber, S. N. (2007) Relationship between the corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal and rostral premotor cortex and area 24c: An anatomical substrate for cognition to action. European Journal of Neuroscience 26:2005–24.CrossRefGoogle ScholarPubMed
Cancelliere, A. E. B. & Kertesz, A. (1990) Lesion localization in acquired deficits of emotional expression and comprehension. Brain and Cognition 13:133–47.Google Scholar
Chang, C.-C., Lee, Y. C., Lui, C.-C. & Lai, S.-L. (2007) Right anterior cingulate cortex infarction and transient speech aspontaneity. Archives of Neurology 64:442–46.Google Scholar
Chassagnon, S., Minotti, L., Kremer, S., Verceuil, L., Hoffmann, D., Benabid, A. L. & Kahane, P. (2003) Restricted frontomesial epileptogenic focus generating dyskinetic behavior and laughter. Epilepsia 44:859–63.CrossRefGoogle ScholarPubMed
Cheney, D. L. & Seyfarth, R. M. (1990) How monkeys see the world: Inside the mind of another species. University of Chicago Press.Google Scholar
Cheney, D. L. & Seyfarth, R. M. (2005) Constraints and preadaptations in the earliest stages of language evolution. The Linguistic Review 22:135–59.Google Scholar
Cheney, D. L. & Seyfarth, R. M. (2007) Baboon metaphysics: The evolution of a social mind. University of Chicago Press.Google Scholar
Clay, Z. & Zuberbühler, K. (2009) Food-associated calling sequences in bonobos. Animal Behaviour 77:1387–96.Google Scholar
Clegg, M. (2012) The evolution of the human vocal tract: Specialized for speech? In: Music, language, and human evolution, ed. Bannan, N., pp. 5880. Oxford University Press.Google Scholar
Cohen, J. (2010) Almost chimpanzee: Searching for what makes us human, in rainforests, labs, sanctuaries, and zoos. Henry Holt.Google Scholar
Cohen, M. J., Riccio, C. A. & Flannery, A. M. (1994) Expressive aprosodia following stroke to the right basal ganglia: A case report. Neuropsychology 8:242–45.CrossRefGoogle Scholar
Coolidge, F. L. & Wynn, T. (2009) The rise of Homo sapiens: The evolution of modern thinking. Wiley-Blackwell.Google Scholar
Coop, G., Bullaughey, K., Luca, F. & Przeworski, M. (2008) The timing of selection at the human FOXP2 gene. Molecular Biology and Evolution 25:1257–59.Google Scholar
Corballis, M. C. (2002) From hand to mouth: The origins of language. Princeton University Press.CrossRefGoogle Scholar
Corballis, M. C. (2003) From mouth to hand: Gesture, speech, and the evolution of right-handedness. Behavioral and Brain Sciences 26:199260.Google Scholar
Coudé, G., Ferrari, P. F., Rodà, F., Maranesi, M., Borelli, E., Veroni, V., Monti, F., Rozzi, S. & Fogassi, L. (2011) Neurons controlling voluntary vocalization in the macaque ventral premotor cortex. PLoS ONE 6:e26822.Google Scholar
Coward, F. (2010) Small worlds, material culture and ancient Near Eastern social networks. In: Social brain, distributed mind, ed. Dunbar, R., Gamble, C. & Gowlett, J., pp. 449–79. Oxford University Press. (Proceedings of the British Academy, vol. 158).Google Scholar
Cross, I. (2001) Music, mind and evolution. Psychology of Music 29:95102.Google Scholar
Cross, I. (2003) Music, cognition, culture, and evolution. In: The cognitive neuroscience of music, ed. Peretz, I. & Zatorre, R., pp. 4256. Oxford University Press.CrossRefGoogle Scholar
Cross, I. & Morley, I. (2009) The evolution of music: Theories, definitions and the nature of the evidence. In: Communicative musicality: Exploring the basis of human companionship, ed. Malloch, S. & Trevarthen, C., pp. 6181. Oxford University Press.Google Scholar
Dang, M. T., Yokoi, F., Yin, H. H., Lovinger, D. M., Wang, Y. & Li, Y. (2006) Disrupted motor learning and long-term synaptic plasticity in mice lacking NMDAR1 in the striatum. Proceedings of the National Academy of Sciences USA 103:15254–59.Google Scholar
Darkins, A. W., Fromkin, V. A. & Benson, D. F. (1988) A characterization of the prosodic loss in Parkinson's disease. Brain and Language 34:315–27.Google Scholar
Darwin, C. (1871) The descent of man, and selection in relation to sex. Murray, John [2nd edition 1879 by John Murray, reprint 2004 by Penguin Books].Google Scholar
David, H. N., Ansseau, M. & Abraini, J. H. (2005) Dopamine–glutamate reciprocal modulation of release and motor responses in the rat caudate-putamen and nucleus accumbens of “intact” animals. Brain Research. Brain Research Reviews 50:336–60.Google Scholar
Davis, P. J., Zhang, S. P., Winkworth, A. & Bandler, R. (1996) Neural control of vocalization: Respiratory and emotional influences. Journal of Voice 10:2338.Google Scholar
DeLong, M. R. & Wichmann, T. (2007) Circuits and circuit disorders of the basal ganglia. Archives of Neurology 64:2024.CrossRefGoogle ScholarPubMed
De Meirleir, L., Seneca, S., Lissens, W., Schoentjes, E. & Desprechins, B. (1995) Bilateral striatal necrosis with a novel point mutation in the mitochondrial ATPase 6 gene. Pediatric Neurology 13:242–46.CrossRefGoogle ScholarPubMed
Dessalles, J.-L. (2007) Why we talk: The evolutionary origins of language. Oxford University Press.Google Scholar
Deutch, A. Y., Colbran, R. J. & Winder, D. J. (2007) Striatal plasticity and medium spiny neuron dendritic remodeling in Parkinsonism. Parkinsonism and Related Disorders 13 (Suppl. 3):S251–58.CrossRefGoogle ScholarPubMed
De Waal, F. B. M. (1988) The communicative repertoire of captive bonobos compared to that of chimpanzees. Behaviour 106:183251.Google Scholar
Dissanayake, E. (2009) Root, leaf, blossom, or bole: Concerning the origin and adaptive function of music. In: Communicative musicality: Exploring the basis of human companionship, ed. Malloch, S. & Trevarthen, C., pp. 1730. Oxford University Press.Google Scholar
Donald, M. (1999) Preconditions for the evolution of protolanguages. In: The descent of mind: Psychological perspectives on hominid evolution, ed. Corballis, M. C. & Lea, S. E. G., pp. 138–54. Oxford University Press.Google Scholar
Doupe, A. J. & Kuhl, P. K. (1999) Birdsong and human speech: Common themes and mechanisms. Annual Review of Neuroscience 22:567631.Google Scholar
Doupe, A. J., Perkel, D. J., Reiner, A. & Stern, E. A. (2005) Birdbrains could teach basal ganglia research a new song. Trends in Neurosciences 28(7):353–63.CrossRefGoogle ScholarPubMed
Doya, K. (2000) Complementary roles of basal ganglia and cerebellum in learning and motor control. Current Opinion in Neurobiology 10:732–39.CrossRefGoogle ScholarPubMed
Doyon, J. & Benali, H. (2005) Reorganization and plasticity in the adult brain during learning of motor skills. Current Opinion in Neurobiology 15:161–67.Google Scholar
Duffy, J. R. (2005) Motor speech disorders: Substrates, differential diagnosis, and management, 2nd edition. Elsevier Mosby.Google Scholar
Dum, R. P. & Strick, P. L. (2002) Motor areas in the frontal lobe of the primate. Physiology and Behavior 77:677–82.Google Scholar
Dunbar, R. I. M. (1996) Grooming, gossip, and the evolution of language. Harvard University Press.Google Scholar
Dunbar, R. I. M. (2012) On the evolutionary function of song and dance. In: Music, language, and human evolution, ed. Bannan, N., pp. 201–14. Oxford University Press.Google Scholar
Egnor, S. E. R., Wickelgren, J. G. & Hauser, M. D. (2007) Tracking silence: Adjusting vocal production to avoid acoustic interference. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 193(4):477–83.Google Scholar
Elowson, A. M. & Snowdon, C. T. (1994) Pygmy marmosets, Cebuella pygmaea, modify vocal structure in response to changed social environment. Animal Behaviour 47:1267–77.Google Scholar
Enard, W. (2011) FOXP2 and the role of cortico-basal ganglia circuits in speech and language evolution. Current Opinion in Neurobiology 21:415–24.Google Scholar
Enard, W., Gehre, S., Hammerschmidt, K., Hölter, S. M., Blass, T., Somel, M., Brückner, M. K., Schreiweis, C., Winter, C., Sohr, R., Becker, L., Wiebe, V., Nickel, B., Giger, T., Müller, U., Groszer, M., Adler, T., Aguilar, A., Bolle, I., Calzada-Wack, J., Dalke, C., Ehrhardt, N., Favor, J., Fuchs, H., Gailus-Durner, V., Hans, W., Hölzlwimmer, G., Javaheri, A., Kalaydjiev, S., Kallnik, M., Kling, E., Kunder, S., Mossbrugger, I., Naton, B., Racz, I., Rathkolb, B., Rozman, J., Schrewe, A., Busch, D. H., Graw, J., Ivandic, B., Klingenspor, M., Klopstock, T., Ollert, M., Quintanilla-Martinez, L., Schulz, H., Wolf, E., Wurst, W., Zimmer, A., Fisher, S. E., Morgenstern, R., Arendt, T., de Angelis, M. H., Fischer, J., Schwarz, J. & Pääbo, S. (2009) A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137:961–71.Google Scholar
Enard, W. & Pääbo, S. (2004) Comparative primate genomics. Annual Review of Genomics and Human Genetics 5:351–78.CrossRefGoogle ScholarPubMed
Enard, W., Przeworski, M., Fisher, S. E., Lai, C. S., Wiebe, V., Kitano, T., Monaco, A. P. & Pääbo, S. (2002) Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418(6900):869–72.Google Scholar
Endicott, P., Ho, S. Y. W. & Stringer, C. (2010) Using genetic evidence to evaluate four palaeoanthropological hypotheses for the timing of Neanderthal and modern human origins. Journal of Human Evolution 59:8795.Google Scholar
Esposito, A., Demeurisse, G., Alberti, B. & Fabbro, F. (1999) Complete mutism after midbrain periaqueductal gray lesion. NeuroReport 10:681–85.Google Scholar
Evatt, M. L., DeLong, M. R. & Vitek, J. L. (2002) Parkinson's disease. In: Diseases of the nervous system, vol. 1, 3rd edition, ed. Asbury, A. K., McKhann, G. M., McDonald, W. I. & Goadsby, P. J., pp. 477–89. Cambridge University Press.Google Scholar
Falk, D. (2004) Prelinguistic evolution in early hominins: Whence motherese? Behavioral and Brain Sciences 27(4):491503.Google Scholar
Falk, D. (2007) Evolution of the primate brain. In: Handbook of palaeoanthropology, vol. 2: Primate evolution and human origins, ed. Henke, W. & Tattersall, I., pp. 1133–62. Springer-Verlag.Google Scholar
Falk, D. (2009) Finding our tongues: Mothers, infants and the origins of language. Basic Books.Google Scholar
Fant, G. (1970) Acoustic theory of speech production – with calculations based on X-ray studies of Russian articulations, 2nd edition. Mouton.Google Scholar
Fee, E. J. (1995) The phonological system of a specifically language-impaired population. Clinical Linguistics and Phonetics 9:189209.Google Scholar
Fink, G. R., Frackowiak, R. S. J., Pietrzyk, U. & Passingham, R. E. (1997) Multiple nonprimary motor areas in the human cortex. Journal of Neurophysiology 77:2164–74.CrossRefGoogle ScholarPubMed
Finlay, B. L. & Darlington, R. B. (1995) Linked regularities in the development and evolution of mammalian brains. Science 268:1578–84.CrossRefGoogle ScholarPubMed
Fischer, J. (2003) Developmental modifications in the vocal behavior of non-human primates. In: Primate audition: Ethology and neurobiology, ed. Ghazanfar, A. A., pp. 109–25. CRC Press.Google Scholar
Fischer, J., Hammerschmidt, K., Cheney, D. L. & Seyfarth, R. M. (2002) Acoustic features of male baboon loud calls: Influences of context, age, and individuality. Journal of the Acoustical Society of America 111:1465–74.Google Scholar
Fischer, J., Kitchen, D. M., Seyfarth, R. M. & Cheney, D. L. (2004) Baboon loud calls advertise male quality: Acoustic features and their relation to rank, age, and exhaustion. Behavioral Ecology and Sociobiology 56:140–48.Google Scholar
Fisher, S. E., Lai, C. S. L. & Monaco, A. P. (2003) Deciphering the genetic basis of speech and language disorders. Annual Review of Neuroscience 26:5780.CrossRefGoogle ScholarPubMed
Fisher, S. E. & Scharff, C. (2009) FOXP2 as a molecular window into speech and language. Trends in Genetics 25:166–77.Google Scholar
Fitch, W. T. (1997) Vocal tract length and formant frequency dispersion correlate with body size in rhesus macaques. Journal of the Acoustical Society of America 102:1213–22.Google Scholar
Fitch, W. T. (2000a) The evolution of speech: A comparative review. Trends in Cognitive Sciences 4(7):258–67.Google Scholar
Fitch, W. T. (2000b) The phonetic potential of nonhuman vocal tracts: Comparative cineradiographic observations of vocalizing animals. Phonetica 57:205–18.Google Scholar
Fitch, W. T. (2012) The biology and evolution of rhythm: Unraveling a paradox. In: Language and music as cognitive systems, ed. Rebuschat, P., Rohrmeier, M., Hawkins, J. A. & Cross, I., pp. 7395. Oxford University Press.Google Scholar
Fitch, W. T., Huber, L. & Bugnyar, T. (2010) Social cognition and the evolution of language: Constructing cognitive phylogenies. Neuron 65(6):795814. doi: 10.1016/j.neuron.2010.03.011.Google Scholar
Fitch, W. T. & Reby, D. (2001) The descended larynx is not uniquely human. Proceedings of the Royal Society, B: Biological Sciences 268:1669–75.Google Scholar
Flaherty, A. W. & Graybiel, A. M. (1993) Two input systems for body representations in the primate striatal matrix: Experimental evidence in the squirrel monkey. Journal of Neuroscience 13:1120–37.CrossRefGoogle ScholarPubMed
Flaherty, A. W. & Graybiel, A. M. (1994) Input-output organization of the sensorimotor striatum in the squirrel monkey. Journal of Neuroscience 14:599610.Google Scholar
Gaser, C. & Schlaug, G. (2003) Brain structures differ between musicians and non-musicians. Journal of Neuroscience 23:9240–45.Google Scholar
Geissmann, T. (1984) Inheritance of song parameters in the gibbon song, analysed in 2 hybrid gibbons (Hylobates pileatus X H. lar). Folia Primatologica 42:216–35.Google Scholar
Geissmann, T. (2000) Gibbon songs and human music from an evolutionary perspective. In: The origins of music, ed. Wallin, N. L., Merker, B. & Brown, S., pp. 103–23. MIT Press.Google Scholar
Gerardin, E., Lehéricy, S., Pochon, J.-B., Tézenas du Montcel, S., Mangin, J.-F., Poupon, F., Agid, Y., Le Bihan, D. & Marsault, C. (2003) Foot, hand, face and eye representation in the human striatum. Cerebral Cortex 13:162–69.Google Scholar
Gerfen, C. R. (2010) Functional neuroanatomy of dopamine in the striatum. In: Dopamine handbook, ed. Iversen, L. L., Iversen, S. D., Dunnett, S. B. & Björklund, A., pp. 1121. Oxford University Press.Google Scholar
Gerfen, C. R. & Bolam, J. P. (2010) The neuroanatomical organization of the basal ganglia. In: Handbook of basal ganglia structure and function, ed. Steiner, H. & Tseng, K. Y., pp. 328. Elsevier.Google Scholar
Gerfen, C. R. & Surmeier, D. J. (2011) Modulation of striatal projection systems by dopamine. Annual Review of Neuroscience 34:441–66.CrossRefGoogle ScholarPubMed
Ghazanfar, A. A. & Miller, C. T. (2006) Language evolution: Loquacious monkey brains? Current Biology 16:R879–81.Google Scholar
Ghazanfar, A. A., Morill, R. J. & Kayser, C. (2013) Monkeys are perceptually tuned to facial expressions that exhibit a theta-like speech rhythm. Proceedings of the National Academy of Sciences USA 110:1959–63.Google Scholar
Ghazanfar, A. A. & Rendall, D. (2008) Evolution of human vocal production. Current Biology 18(11):R457–60.CrossRefGoogle ScholarPubMed
Ghazanfar, A. A., Takahashi, D. Y., Mathur, N. & Fitch, W. T. (2012) Cineradiography of monkey lipsmacking reveals the putative origins of speech dynamics. Current Biology 22:1176–82.CrossRefGoogle Scholar
Gil-da-Costa, R., Martin, A., Lopes, M. A., Muňoz, M., Fritz, J. B. & Braun, A. R. (2006) Species-specific calls activate homologs of Broca's and Wernicke's areas in the macaque. Nature Neuroscience 9:1064–70.Google Scholar
Giroud, M., Lemesle, M., Madinier, G., Billiar, T. & Dumas, R. (1997) Unilateral lenticular infarcts: Radiological and clinical syndromes, aetiology, and prognosis. Journal of Neurology, Neurosurgery, and Psychiatry 63:611–15.Google Scholar
Gonzalez-Lima, F. (2010) Responses of limbic, midbrain and brainstem structures to electrically-induced vocalizations. In: Handbook of mammalian vocalization: An integrative neuroscience approach, ed. Brudzynski, S. M., pp. 293301. Elsevier.Google Scholar
Goodall, J. (1986) The chimpanzees of Gombe: Patterns of behavior. Belknap Press/Harvard University Press.Google Scholar
Gopnik, M. (1990a) Feature-blind grammar and dysphasia. Nature 344(6268):715. doi: 10.1038/344715a0.Google Scholar
Graybiel, A. M. (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends in Neurosciences 13:244–54.Google Scholar
Graybiel, A. M. (2005) The basal ganglia: Learning new tricks and loving it. Current Opinion in Neurobiology 15:638–44.Google Scholar
Graybiel, A. M. (2008) Habits, rituals, and the evaluative brain. Annual Review of Neuroscience 31:359–87. doi: 10.1146/annurev.neuro.29.051605.112851.Google Scholar
Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M. H.-Y., Hansen, N. F., Durand, E. Y., Malaspinas, A.-S., Jensen, J. D., Marques-Bonet, T., Alkan, C., Prüfer, K., Meyer, M., Burbano, H. A., Good, J. M., Schultz, R., Aximu-Petri, A., Butthof, A., Höber, B., Höffner, B., Siegemund, M., Weihmann, A., Nusbaum, C., Lander, E. S., Russ, C., Novod, N., Affourtit, J., Egholm, M., Verna, C., Rudan, P., Brajkovic, D., Kucan, E., Gusic, I., Doronichev, V. B., Golovanova, L. V., Lalueza-Fox, C. , de la Rasilla, M., Fortea, J., Rosas, A., Schmitz, R. W., Johnson, P. L. F., Eichler, E. E., Falush, D., Birney, E., Mullikin, J. C., Slatkin, M., Nielsen, R., Kelso, J., Lachmann, M., Reich, D. & Pääbo, S. (2010) A draft sequence of the Neandertal genome. Science 328(5979):710–22.Google Scholar
Grillner, S. (1991) Recombination of motor pattern generators. Current Biology 1:231–33.CrossRefGoogle ScholarPubMed
Grillner, S. & Wallén, P. (2004) Innate versus learned movements – a false dichotomy? In: Brain mechanisms for the integration of posture and movement, ed. Mori, S., Stuart, D. G. & Wiesendanger, M., pp. 312. (Progress in Brain Research, vol. 143). Elsevier.Google Scholar
Groenewegen, H. J. (2003) The basal ganglia and motor control. Neural Plasticity 10:107–20.Google Scholar
Groswasser, Z., Korn, C., Groswasser-Reider, I. & Solzi, P. (1988) Mutism associated with buccofacial apraxia and bihemispheric lesions. Brain and Language 34:157–68.Google Scholar
Gruber-Dujardin, E. (2010) Role of the periaqueductal gray in expressing vocalization. In: Handbook of mammalian vocalization: An integrative neuroscience approach, ed. Brudzynski, S. M., pp. 313–27. Elsevier.CrossRefGoogle Scholar
Haber, S. N. (2010a) Integrative networks across basal ganglia circuits. In: Handbook of basal ganglia structure and function, ed. Steiner, H. & Tseng, K. Y., pp. 409–27. Elsevier.Google Scholar
Haber, S. N. (2010b) Convergence of limbic, cognitive, and motor cortico-striatal circuits with dopamine pathways in primate brain. In: Dopamine handbook, ed. Iversen, L. L., Iversen, S. D., Dunnett, S. B. & Björklund, A., pp. 3848. Oxford University Press.Google Scholar
Haber, S. N., Fudge, J. L. & McFarland, N. R. (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. Journal of Neuroscience 20:2369–82.Google Scholar
Haber, S. N., Kunishio, K., Mizobuchi, M. & Lynd-Balta, E. (1995) The orbital and medial prefrontal circuit through the primate basal ganglia. Journal of Neuroscience 15:4851–67.Google Scholar
Haesler, S., Rochefort, C., Georgi, B., Licznerski, P., Osten, P. & Scharff, C. (2007) Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus area X. PLoS Biology 5:2885–97.Google Scholar
Hage, S. R. (2010a) Localization of the central pattern generator for vocalization. In: Handbook of mammalian vocalization: An integrative neuroscience approach, ed. Brudzynski, S. M., pp. 329–37. Elsevier.Google Scholar
Hage, S. R. (2010b) Neuronal networks involved in the generation of vocalization. In: Handbook of mammalian vocalization: An integrative neuroscience approach, ed. Brudzynski, S. M., pp. 339–49. Elsevier.Google Scholar
Hage, S. R., Gavrilov, N. & Nieder, A. (2013) Cognitive control of distinct vocalizations in rhesus monkeys. Journal of Cognitive Neuroscience 25:1692–701. doi:0.1162/jocn_a_00428.Google Scholar
Hage, S. R. & Jürgens, U. (2006) On the role of the pontine brainstem in vocal pattern generation: A telemetric single-unit recording study in the squirrel monkey. Journal of Neuroscience 26:7105–15.Google Scholar
Hammerschmidt, K. & Fischer, J. (2008) Constraints in primate vocal production. In: Evolution of communicative flexibility: Complexity, creativity, and adaptability in human and animal communication, ed. Oller, D. K. & Griebel, U., pp. 93119. MIT Press.Google Scholar
Hardus, M. E., Lameira, A. R., Singleton, I., Morrogh-Bernard, H. C., Knott, C. D., Ancrenaz, M., Utami Atmoko, S. S. & Wich, S. A. (2009a) A description of the orangutan's vocal and sound repertoire, with a focus on geographic variation. In: Orangutans: Geographic variation in behavioral ecology and conservation, ed. Wich, S. A., Utami Atmoko, S. S., Setia, T. M. & van Schaik, C. P., pp. 4964. Oxford University Press.Google Scholar
Hardus, M. E., Lameira, A. R., van Schaik, C. P. & Wich, S. A. (2009b) Tool use in wild orang-utans modifies sound production: A functionally deceptive innovation? Proceedings of the Royal Society B: Biological Sciences 276:3689–94.Google Scholar
Hast, M. H., Fischer, J. M., Wetzel, A. B. & Thompson, V. E. (1974) Cortical motor representation of the laryngeal muscles in Macaca mulatta . Brain Research 73:229–40.Google Scholar
Hayes, C. (1951) The ape in our house. Harper & Brothers.Google Scholar
Hayes, K. J. & Hayes, C. (1952) Imitation in a home-raised chimpanzee. Journal of Comparative and Physiological Psychology 45:450–59.Google Scholar
Heilman, K. M., Leon, S. A. & Rosenbek, J. C. (2004) Affective aprosodia from a medial frontal stroke. Brain and Language 89:411–16.Google Scholar
Hihara, S., Yamada, H., Iriki, A. & Okanoya, K. (2003) Spontaneous vocal differentiation of coo-calls for tools and food in Japanese monkeys. Neuroscience Research 45:383–89.Google Scholar
Hikosaka, O. (2007) GABAergic output of the basal ganglia. In: GABA and the basal ganglia: From molecules to systems, ed. Tepper, J. M., Abercrombie, E. D. & Bolam, J. P., pp. 209–26. (Progress in Brain Research, vol. 160). Elsevier.Google Scholar
Hillix, W. A. (2007) The past, present, and possible futures of animal language research. In: Primate perspectives on behavior and cognition, ed. Washburn, D. A., pp. 223–34. American Psychological Association.Google Scholar
Hirose, H. (2010) Investigating the physiology of laryngeal structures. In: The handbook of phonetic sciences, 2nd edition, ed. Hardcastle, W. J., Laver, J. & Gibbon, F. E., pp. 130–52. Wiley-Blackwell.Google Scholar
Ho, A. K., Bradshaw, J. L., Iansek, R. & Alfredson, R. (1999a) Speech volume regulation in Parkinson's disease: Effects of implicit cues and explicit instructions. Neuropsychologia 37:1453–60.Google Scholar
Ho, A. K., Iansek, R. & Bradshaw, J. L. (1999b) Regulation of Parkinsonian speech volume: The effect of interlocuter distance. Journal of Neurology, Neurosurgery, and Psychiatry 67:199202.Google Scholar
Hofreiter, M. (2011) Drafting human ancestry: What does the Neanderthal genome tell us about hominid evolution? Commentary on Green et al. (2010). Human Biology 83:111.Google Scholar
Holloway, R. L., Broadfield, D. C. & Yuan, M. S. (2004) The human fossil record: Vol. III. Brain endocasts – the paleoneurological evidence. Wiley.Google Scholar
Holstege, G. (1991) Descending pathways from the periaqueductal gray and adjacent areas. In: Midbrain periaqueductal gray matter: Functional, anatomical, and neurochemical organization, ed. Depaulis, A. & Bandler, R., pp. 239–65. Plenum Press. (NATO ASI Series, Life Sciences, vol. 213).Google Scholar
Hopkins, W. D. & Savage-Rumbaugh, E. S. (1991) Vocal communication as a function of differential rearing experiences in Pan paniscus: A preliminary report. International Journal of Primatology 12:559–83.Google Scholar
Hopkins, W. D., Taglialatela, J. P. & Leavens, D. A. (2007) Chimpanzees differentially produce novel vocalizations to capture the attention of a human. Animal Behaviour 73(2):281–86.Google Scholar
Hurst, J., Baraitser, M., Auger, E., Graham, F. & Norell, S. (1990) An extended family with a dominantly inherited speech disorder. Developmental Medicine and Child Neurology 32:347–55.Google Scholar
Iannetti, P., Spalice, A., Raucci, U., Atzei, G. & Cipriani, C. (1997) Gelastic epilepsy: Video-EEG, MRI and SPECT characteristics. Brain and Development 19:418–21.Google Scholar
Ikeda, A., Lüders, H. O., Burgess, R. C. & Shibasaki, H. (1992) Movement-related potentials recorded from supplementary motor area and primary motor area. Brain 115:1017–43.Google Scholar
Ingold, T. (1994) Tool-using, toolmaking, and the evolution of language. In: Hominid culture in primate perspective, ed. Quiatt, D. & Itani, J., pp. 279314. University Press of Colorado.Google Scholar
Iwasa, H., Shibata, T., Mine, S., Koseki, K., Yasuda, K., Kasagi, Y., Okada, M., Yabe, H., Kaneko, S. & Nakajima, Y. (2002) Different patterns of dipole source localization in gelastic seizure with or without a sense of mirth. Neuroscience Research 43:2329.Google Scholar
Iwatsubo, T., Kuzuhara, S., Kanemitsu, A., Shimada, H. & Toyokura, Y. (1990) Corticofugal projections to the motor nuclei of the brainstem and spinal cord in humans. Neurology 40(2):309–12.Google Scholar
Jacob, F. (1977) Evolution and tinkering. Science 196:1161–66.Google Scholar
James, W. (2003) The ceremonial animal: A new portrait of anthropology. Oxford University Press.Google Scholar
Janik, V. & Slater, P. J. B. (1997) Vocal learning in mammals. In: Advances in the Study of Behavior, vol. 26, ed. Slater, P. J. B., Rosenblatt, J. S., Snowdon, C. T., & Milinski, M., pp. 5999. Academic Press.Google Scholar
Janik, V. M. & Slater, P. J. B. (2000) The different roles of social learning in vocal communication. Animal Behaviour 60:111.Google Scholar
Jankovic, J. (2008) Parkinson's disease: Clinical features and diagnosis. Journal of Neurology, Neurosurgery, and Psychiatry 79:368–76.Google Scholar
Jarvis, E. D. (2004a) Brains and birdsong. In: Nature's music: The science of birdsong, ed. Marler, P. & Slabbekoorn, H., pp. 226–71. Elsevier.Google Scholar
Jarvis, E. D. (2004b) Learned birdsong and the neurobiology of human language. In: Behavioral neurobiology of birdsong, ed. Zeigler, H. P., Marler, P., pp. 749–77. (Annals of the New York Academy of Sciences, vol. 1016). New York Academy of Sciences.Google Scholar
Joel, D. & Weiner, I. (1994) The organization of the basal ganglia-thalamocortical circuits: Open interconnected rather than closed segregated. Neuroscience 63:363–79.Google Scholar
Jonas, S. (1981) The supplementary motor region and speech emission. Journal of Communication Disorders 14:349–73.CrossRefGoogle ScholarPubMed
Jonas, S. (1987) The supplementary motor region and speech. In: The frontal lobes revisited, ed. Perecman, E., pp. 241–50. Erlbaum.Google Scholar
Jürgens, U. (1974) On the elicitability of vocalization from the cortical larynx area. Brain Research 81:564–66.Google Scholar
Jürgens, U. (1986) The squirrel monkey as an experimental model in the study of cerebral organization of emotional vocal utterances. European Archives of Psychiatry and Neurological Sciences 236:4043.Google Scholar
Jürgens, U. (2002b) Neural pathways underlying vocal control. Neuroscience and Biobehavioral Reviews 26:235–58.Google Scholar
Jürgens, U. & Alipour, M. (2002) A comparative study on the cortico-hypoglossal connections in primates, using biotin dextranamine. Neuroscience Letters 328:245–48.Google Scholar
Jürgens, U., Kirzinger, A. & von Cramon, D. (1982) The effects of deep-reaching lesions in the cortical face area on phonation: A combined case report and experimental monkey study. Cortex 18:125–39.CrossRefGoogle ScholarPubMed
Jürgens, U. & Ploog, D. (1970) Cerebral representation of vocalization in the squirrel monkey. Experimental Brain Research 10:532–54.Google Scholar
Jürgens, U. & von Cramon, D. (1982) On the role of the anterior cingulate cortex in phonation: A case report. Brain and Language 15:234–48.Google Scholar
Kaestner, K. H., Knöchel, W. & Martínez, D. E. (2000) Unified nomenclature for the winged helix/forkhead transcription factors. Genes and Development 14:142–46.Google Scholar
Kawashima, S., Ueki, Y., Kato, T., Matsukawa, N., Mima, T., Hallett, M., Ito, K. & Ojika, K. (2012) Changes in striatal dopamine release associated with human motor-skill acquisition. PLOS ONE 7:e31728.Google Scholar
Kent, R. D., Kent, J. F., Weismer, G. & Duffy, J. R. (2000) What dysarthrias can tell us about the neural control of speech. Journal of Phonetics 28:273302.Google Scholar
Kent, R. D. & Read, C. (2002) The acoustic analysis of speech, 2nd edition. Singular/Thomson Learning.Google Scholar
Kim, I.-S., Ki, C.-S. & Park, K.-J. (2010) Pediatric-onset dystonia associated with bilateral striatal necrosis and G14459A mutation in a Korean family: A case report. Journal of Korean Medical Science 25:180–84.Google Scholar
Kirzinger, A. (1985) Cerebellar lesion effects on vocalization of the squirrel monkey. Behavioural Brain Research 16:177–81.Google Scholar
Kirzinger, A. & Jürgens, U. (1982) Cortical lesion effects and vocalization in the squirrel monkey. Brain Research 233:299315.Google Scholar
Knight, C. (1999) Sex and language as pretend-play. In: The evolution of culture: An interdisciplinary view, ed. Dunbar, R., Knight, C. & Power, C., pp. 228–47. Edinburgh University Press.Google Scholar
Koda, H., Oyakawa, C., Kato, A. & Masataka, N. (2007) Experimental evidence for the volitional control of vocal production in an immature gibbon. Behaviour 144:681–92.Google Scholar
Kovac, S., Deppe, M., Mohammadi, S., Schiffbauer, H., Schwindt, W., Möddel, G., Dogan, M. & Evers, S. (2009) Gelastic seizures: A case of lateral frontal lobe epilepsy and review of the literature. Epilepsy and Behavior 15:249–53.Google Scholar
Krägeloh-Mann, I., Helber, A., Mader, I., Staudt, M., Wolff, M., Groenendaal, F. & DeVries, L. (2002) Bilateral lesions of thalamus and basal ganglia: Origin and outcome. Developmental Medicine and Child Neurology 44:477–84.Google Scholar
Krause, J., Lalueza-Fox, C., Orlando, L., Enard, W., Green, R. E., Burbano, H. A., Hublin, J. J., Hänni, C., Fortea, J., De la Rasilla, M., Bertranpetit, J., Rosas, A. & Pääbo, S. (2007) The derived FOXP2 variant of modern humans was shared with Neandertals. Current Biology 17:15.Google Scholar
Kreiman, J. & Sidtis, D. (2011) Foundations of voice studies: An interdisciplinary approach to voice production and perception. Wiley-Blackwell.Google Scholar
Kreitzer, A. C. & Malenka, R. C. (2008) Striatal plasticity and basal ganglia circuit function. Neuron 60:543–54.Google Scholar
Kunishio, K. & Haber, S. N. (1994) Primate cingulostriatal projection: Limbic striatal versus sensorimotor striatal input. Journal of Comparative Neurology 350:337–56.Google Scholar
Kuypers, H. G. J. M. (1958a) Corticobulbar connection to the pons and lower brain-stem in man. Brain 81:364–88.Google Scholar
Kuypers, H. G. J. M. (1958b) Some projections from the peri-central cortex to the pons and lower brain stem in monkey and chimpanzee. Journal of Comparative Neurology 110:221–55.Google Scholar
Ladefoged, P. (2005) Vowels and consonants: An introduction to the sounds of languages, 2nd edition. Blackwell.Google Scholar
Lamendella, J. T. (1977) The limbic system in human communication. In: Studies in neurolinguistics, vol. 3, ed. Whitaker, H. & Whitaker, H. A., pp. 157222. Academic Press (Perspectives in Neurolinguistics and Psycholinguistics Series).Google Scholar
Larson, C. R., Sutton, D. & Lindeman, R. C. (1978) Cerebellar regulation of phonation in rhesus monkey (Macaca mulatta). Experimental Brain Research 33:118.Google Scholar
Larson, C. R., Sutton, D., Taylor, E. M. & Lindeman, R. (1973) Sound spectral properties of conditioned vocalization in monkeys. Phonetica 27:100–10.Google Scholar
Le Beau, J. (1954) Anterior cingulectomy in man. Journal of Neurosurgery 11:268–76.Google Scholar
Lemasson, A. & Hausberger, M. (2004) Patterns of vocal sharing and social dynamics in a captive group of Campbell's monkeys (Cercopithecus campbelli campbelli). Journal of Comparative Psychology 118:347–59.Google Scholar
Lemasson, A., Hausberger, M. & Zuberbühler, K. (2005) Socially meaningful vocal plasticity in adult Campbell's monkeys (Cercopithecus campbelli). Journal of Comparative Psychology 119:220–29.Google Scholar
Lewin, R. & Foley, R. A. (2004) Principles of human evolution, 2nd edition. Blackwell.Google Scholar
Lewis, J. (2009) As well as words: Congo Pygmy hunting, mimicry, and play. In: The cradle of language, ed. Botha, R. & Knight, C., pp. 236–56. Oxford University Press.Google Scholar
Lieberman, D. E. (2011) The evolution of the human head. Harvard University Press.Google Scholar
Lieberman, P. (1968) Primate vocalizations and human linguistic ability. Journal of the Acoustical Society of America 44:1574–84.Google Scholar
Lieberman, P. (2000) Human language and our reptilian brain: The subcortical bases of speech, syntax, and thought. Harvard University Press.Google Scholar
Lieberman, P. (2006a) Limits on tongue deformation: Diana monkey formants and the impossible vocal tract shapes proposed by Riede et al. (2005). Journal of Human Evolution 50:219–21.Google Scholar
Lieberman, P. (2006b) Toward an evolutionary biology of language. Harvard University Press.Google Scholar
Lieberman, P. (2007) The evolution of human speech: Its anatomical and neural bases. Current Anthropology 48:3966.Google Scholar
Lieberman, P., Klatt, D. H. & Wilson, W. H. (1969) Vocal tract limitations on the vowel repertoires of rhesus monkey and other nonhuman primates. Science 164:1185–87.Google Scholar
Liégeois, F., Baldeweg, T., Connelly, A., Gadian, D. G., Mishkin, M. & Vargha-Khadem, F. (2003) Language fMRI abnormalities associated with FOXP2 gene mutation. Nature Neuroscience 6:1230–37.Google Scholar
Locke, J. L. (1993) The child's path to spoken language, First edition. Harvard University Press.Google Scholar
Logemann, J. A., Fisher, H. B., Boshes, B. & Blonsky, E. R. (1978) Frequency and cooccurrence of vocal tract dysfunctions in the speech of a large sample of Parkinson patients. Journal of Speech and Hearing Disorders 43:4757.Google Scholar
Loucks, T. M. J., Poletto, C. J., Simonyan, K., Reynolds, C. L. & Ludlow, C. L. (2007) Human brain activation during phonation and exhalation: Common volitional control for two upper airway functions. NeuroImage 36:131–43.Google Scholar
Lund, J. P. & Kolta, A. (2006) Brainstem circuits that control mastication: Do they have anything to say during speech? Journal of Communication Disorders 39:381–90.Google Scholar
MacDermot, K. D., Bonora, E., Sykes, N., Coupe, A. M., Lai, C. S. L., Vernes, S. C., Vargha-Khadem, F., McKenzie, F., Smith, R. L., Monaco, A. P. & Fisher, S. E. (2005) Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits. American Journal of Human Genetics 76:1074–80.Google Scholar
MacNeilage, P. F. (1998) The frame/content theory of evolution of speech production. Behavioral and Brain Sciences 21(4):499511.Google Scholar
MacNeilage, P. F. (2008) The origin of speech. Oxford University Press.Google Scholar
Mallet, N., Ballion, B., Le Moine, C. & Gonon, F. (2006) Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats. Journal of Neuroscience 26:3875–84.Google Scholar
Malloch, S. & Trevarthen, C., eds. (2009) Communicative musicality: Exploring the basis of human companionship. Oxford University Press.Google Scholar
Manser, M. B., Seyfarth, R. M. & Cheney, D. L. (2002) Suricate alarm calls signal predator class and urgency. Trends in Cognitive Sciences 6:5557.Google Scholar
Mao, C. C., Coull, B. M., Golper, L. A. & Rau, M. T. (1989) Anterior operculum syndrome. Neurology 39:1169–72.Google Scholar
Maricic, T., Günther, V., Georgiev, O., Gehre, S., Curlin, M., Schreiweis, C., Naumann, R., Burbano, H. A., Meyer, M., Laluela-Fox, C., de la Rasilla, M., Rosas, A., Gajovic, S., Kelso, J., Enard, W., Schaffner, W. & Pääbo, S. (2013) A recent evolutionary change affects a regulatory element in the human FOXP2 gene. Molecular Biology and Evolution 30(4):844–52. doi: 10.1093/molbev/mss271.Google Scholar
Marsden, C. D. (1982) The mysterious motor function of the basal ganglia: The Robert Wartenberg Lecture. Neurology 32:514–39.Google Scholar
Marshall, A. J., Wrangham, R. W. & Arcadi, A. C. (1999) Does learning affect the structure of vocalizations in chimpanzees? Animal Behaviour 58:825–30.Google Scholar
Masataka, N. (2008a) The gestural theory of and the vocal theory of language origins are not incompatible with one another. In: The origins of language: Unraveling evolutionary forces, ed. Masataka, N., pp. 110. Springer.Google Scholar
Masataka, N. (2008b) Implication of the human musical faculty for evolution of language. In: The origins of language: Unraveling evolutionary forces, ed. Masataka, N., pp. 133–51. Springer.Google Scholar
Masdeu, J. C., Schoene, W. C. & Funkenstein, H. (1978) Aphasia following infarction of the left supplementary motor area: A clinicopathologic study. Neurology 28:1220–23.Google Scholar
McHaffie, J. G., Stanford, T. R., Stein, B. E., Coizet, V. & Redgrave, P. (2005) Subcortical loops through the basal ganglia. Trends in Neurosciences 28:401407.Google Scholar
Miller, C. T., Beck, K., Meade, B. & Wang, X. (2009a) Antiphonal call timing in marmosets is behaviorally significant: Interactive playback experiments. Journal of Comparative Physiology, A: Neuroethology, Sensory, Neural, and Behavioral Physiology 195:783–89.Google Scholar
Miller, C. T., Eliades, S. J. & Wang, X. (2009b) Motor planning for vocal production in common marmosets. Animal Behaviour 78:1195–203.Google Scholar
Milo, R. G. & Quiatt, D. (1994) Language in the middle and late stone ages: Glottogenesis in anatomically modern homo sapiens. In: Hominid culture in primate perspective, ed. Quiatt, D. & Itani, J., pp. 321–39. University Press of Colorado.Google Scholar
Mitani, J. C. & Brandt, K. L. (1994) Social factors influence acoustic variability in the long-distance calls of male chimpanzees. Ethology 96:233–52.Google Scholar
Mitani, J. C. & Gros-Louis, J. (1998) Chorusing and call convergence in chimpanzees: Tests of three hypotheses. Behaviour 135:1041–64.Google Scholar
Mithen, S. J. (2006) The singing Neanderthals: The origins of music, language, mind and body. Harvard University Press. (Original work published in 2005).Google Scholar
Mogenson, G. J., Jones, D. L. & Yim, C. Y. (1980) From motivation to action: Functional interface between the limbic system and the motor system. Progress in Neurobiology 14:6997.Google Scholar
Moore, C. A. (2004) Physiologic development of speech production. In: Speech motor control in normal and disordered speech, ed. Maassen, B., Kent, R. D., Peters, H. F. M., van Lieshout, P. H. H. M. & Hulstijn, W., pp. 191209. Oxford University Press.Google Scholar
Morecraft, R. J. & van Hoesen, G. W. (1992) Cingulate input to the primary and supplementary motor cortices in the Rhesus monkey: Evidence for somatotopy in areas 24c and 23c. Journal of Comparative Neurology 322:471–89.Google Scholar
Morecraft, R. J., Louie, J. L., Herrick, J. L. & Stilwell-Morecraft, K. S. (2001) Cortical innervation of the facial nucleus in the non-human primate: A new interpretation of the effects of stroke and related subtotal brain trauma on the muscles of facial expression. Brain 124:176208.Google Scholar
Morley, I. (2012) Hominin physiological evolution and the emergence of musical capacities. In: Music, language, and human evolution, ed. Bannan, N., pp. 109–41. Oxford University Press.Google Scholar
Müller, J., Wenning, G. K., Verny, M., McKee, A., Chaudhuri, K. R., Jellinger, K., Poewe, W. & Litvan, I. (2001) Progression of dysarthria and dysphagia in postmortem-confirmed Parkinsonian disorders. Archives of Neurology 58:259–64.Google Scholar
Müller-Vahl, K. R., Kaufmann, J., Grosskreutz, J., Dengler, R., Emrich, H. M. & Peschel, T. (2009). Prefrontal and anterior cingulate cortex abnormalities in Tourette syndrome: Evidence from voxel-based morphometry and magnetization transfer imaging. BMC Neuroscience 10:47. Available at: www.biomedcentral.com/1471-2202/10/47 Google Scholar
Munhall, K. & Löfqvist, A. (1992) Gestural aggregation in speech: Laryngeal gestures. Journal of Phonetics 20:111–26.Google Scholar
Myers, R. E. (1976) Comparative neurology of vocalization and speech: Proof of a dichotomy. In: Origins and evolution of language and speech, ed. Harnad, S. R., Steklis, H. D. & Lancaster, J., pp. 745–57. (Annals of the New York Academy of Sciences, vol. 280). New York Academy of Sciences.Google Scholar
Nakano, K. (2000) Neural circuits and topographic organization of the basal ganglia and related regions. Brain and Development 22:S516.Google Scholar
Nambu, A. (2008) Seven problems on the basal ganglia. Current Opinion in Neurobiology 18:595604.Google Scholar
Nambu, A. (2011) Somatotopic organization of the primate basal ganglia. Frontiers in Neuroanatomy 5:26.Google Scholar
Newman, J. D. (2003) Vocal communication and the triune brain. Physiology and Behavior 79:495502.Google Scholar
Nieuwenhuys, R., Voogd, J. & van Huijzen, C. (2008) The human central nervous system, 4th edition. Springer.Google Scholar
Noonan, J. P. (2010) Neanderthal genomics and the evolution of modern humans. Genome Research 20:547–53.Google Scholar
Öngür, D. & Price, J. L. (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cerebral Cortex 10:206–19.Google Scholar
Ouattara, K., Lemasson, A. & Zuberbühler, K. (2009) Campbell's monkeys concatenate vocalizations into context-specific call sequences. Proceedings of the National Academy of Sciences USA 106(51): 22026–31.Google Scholar
Owren, M. J., Amoss, R. T. & Rendall, D. (2011) Two organizing principles of vocal production: Implications for nonhuman and human primates. American Journal of Primatology 73(6):530–44.Google Scholar
Owren, M. J., Dieter, J. A., Seyfarth, R. M. & Cheney, D. L. (1992) “Food” calls produced by adult female rhesus (Macaca mulatta) and Japanese (M. fuscata) macaques, their normally-raised offspring, and offspring cross-fostered between species. Behaviour 120:218–31.Google Scholar
Owren, M. J., Dieter, J. A., Seyfarth, R. M. & Cheney, D. L. (1993) Vocalizations of rhesus (Macaca mulatta) and Japanese (M. fuscata) macaques cross-fostered between species show evidence of only limited modification. Developmental Psychobiology 26:389406.Google Scholar
Packard, M. G. & Knowlton, B. J. (2002) Learning and memory functions of the basal ganglia. Annual Review of Neuroscience 25:563–93.Google Scholar
Panksepp, J. (1998) Affective neuroscience: The foundations of human and animal emotions. Oxford University Press.Google Scholar
Panksepp, J. (2010) Emotional causes and consequences of social-affective vocalization. In: Handbook of mammalian vocalization: An integrative neuroscience approach, ed. Brudzynski, S. M., pp. 201208. Elsevier.Google Scholar
Papoušek, M. (2003) Intuitive parenting: A hidden source of musical stimulation in infancy. In: Musical beginnings: Origins and development of musical competence, ed. Deliège, I. & Sloboda, J., pp. 88112. Oxford University Press.Google Scholar
Parent, A. & Hazrati, L. N. (1995) Functional anatomy of the basal ganglia: I. The cortico-basal ganglia-thalamo-cortical loop. Brain Research Brain Research Reviews 20:91127.Google Scholar
Passingham, R. (2008) What is special about the human brain? Oxford University Press.Google Scholar
Paus, T. (2001) Primate anterior cingulate cortex: Where motor control, drive and cognition interface. Nature Reviews Neuroscience 2:417–24.Google Scholar
Paus, T., Tomaiuolo, F., Otaky, N., MacDonald, D., Petrides, M., Atlas, J., Morris, R. & Evans, A. C. (1996) Human cingulate and paracingulate sulci: Pattern, variability, asymmetry, and probabilistic map. Cerebral Cortex 6:207–14.Google Scholar
Petrides, M., Cadoret, G. & Mackey, S. (2005) Orofacial somatomotor responses in the macaque monkey homologue of Broca's area. Nature 435:1235–38.Google Scholar
Petrides, M. & Pandya, D. N. (2009) Distinct parietal and temporal pathways to the homologues of Broca's area in the monkey. PLoS Biology 7:e1000170.Google Scholar
Picard, N. & Strick, P. L. (1996) Motor areas of the medial wall: A review of their location and functional activation. Cerebral Cortex 6:342–53.Google Scholar
Pierce, J. D. Jr. (1985) A review of attempts to condition operantly alloprimate vocalizations. Primates 26:202–13.Google Scholar
Pistorio, A. L., Vintch, B. & Wang, X. (2006) Acoustic analysis of vocal development in a New World primate, the common marmoset (Callithrix jacchus). Journal of the Acoustical Society of America 120:1655–70.Google Scholar
Postuma, R. B. & Dagher, A. (2006) Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cerebral Cortex 16:1508–21.Google Scholar
Radua, J., van den Heuvel, O. A., Surguladze, S. & Mataix-Cols, D. (2010) Meta-analytical comparison of voxel-based morphometry studies in obsessive-compulsive disorder vs other anxiety disorders. Archives of General Psychiatry 67:701–11.Google Scholar
Ramig, L. O., Fox, C. & Sapir, S. (2004) Parkinson's disease: Speech and voice disorders and their treatment with the Lee Silverman Voice Treatment. Seminars in Speech and Language 25:169–80.Google Scholar
Ramig, L. O., Fox, C. & Sapir, S. (2007) Speech disorders in Parkinson's disease and the effects of pharmacological, surgical and speech treatment with emphasis on Lee Silverman Voice Treatment (LSVT®). In: Parkinson's disease and related disorders, Part 1, ed. Koller, W. C. & Melamed, E., pp. 385–99. (Handbook of Clinical Neurology, vol. 83, 3rd series). Elsevier Press.Google Scholar
Rappaport, R. A. (1999) Ritual and religion in the making of humanity. Cambridge University Press.Google Scholar
Rappaport, R. A. (2000) Pigs for the ancestors: Ritual in the ecology of a New Guinea people, 2nd edition. Waveland Press.Google Scholar
Reimers-Kipping, S., Hevers, W., Pääbo, S. & Enard, W. (2011) Humanized Foxp2 specifically affects cortico-basal ganglia circuits. Neuroscience 175:7584. doi: 10.1016/j.neuroscience.2010.11.042.Google Scholar
Reiner, A. (2010) Organization of corticostriatal projection neuron types. In: Handbook of basal ganglia structure and function, ed. Steiner, H. & Tseng, K. Y., pp. 323–39. Elsevier.Google Scholar
Rendall, D., Kollias, S., Ney, C. & Lloyd, P. (2005) Pitch (F0) and formant profiles of human vowels and vowel-like baboon grunts: The role of vocalizer body size and voice-acoustic allometry. Journal of the Acoustical Society of America 117:944–55.Google Scholar
Riecker, A., Kassubek, J., Gröschel, K., Grodd, W. & Ackermann, H. (2006) The cerebral control of speech tempo: Opposite relationship between speaking rate and BOLD signal changes at striatal and cerebellar structures. NeuroImage 29:4653.Google Scholar
Riede, T., Bronson, E., Hatzikirou, H. & Zuberbühler, K. (2005) Vocal production mechanisms in a non-human primate: Morphological data and a model. Journal of Human Evolution 48:8596.Google Scholar
Riede, T., Bronson, E., Hatzikirou, H. & Zuberbühler, K. (2006) Multiple discontinuities in nonhuman vocal tracts: A response to Lieberman (2006). Journal of Human Evolution 50:222–25.Google Scholar
Riede, T. & Zuberbühler, K. (2003a) Pulse register phonation in Diana monkey alarm calls. Journal of the Acoustical Society of America 113:2919–26.Google Scholar
Riede, T. & Zuberbühler, K. (2003b) The relationship between acoustic structure and semantic information in Diana monkey alarm vocalization. Journal of the Acoustical Society of America 114:1132–42.Google Scholar
Rightmire, G. P. (2004) Brain size and encephalization in early to mid-Pleistocene Homo . American Journal of Physical Anthropology 124:109–23.Google Scholar
Rightmire, G. P. (2007) Later middle Pleistocene Homo . In: Handbook of paleoanthropology, vol. 3: Phylogeny of hominids, ed. Henke, W. & Tattersall, I., pp. 1695–715. Springer.Google Scholar
Robbins, T. W. (2010) From behavior to cognition: Functions of mesostriatal, mesolimbic, and mesocortical dopamine systems. In: Dopamine handbook, ed. Iversen, L. L., Iversen, S. D., Dunnett, S. B. & Björklund, A., pp. 203–14. Oxford University Press.Google Scholar
Robinson, B. W. (1967) Vocalization evoked from forebrain in Macaca mulatta . Physiology and Behavior 2:345–54.Google Scholar
Roland, E. H., Poskitt, K., Rodriguez, E., Lupton, B. A. & Hill, A. (1998) Perinatal hypoxic-ischemic thalamic injury: Clinical features and neuroimagery. Annals of Neurology 44:161–66.Google Scholar
Rosas, A., Martínez-Maza, C., Bastir, M., García-Tabernero, A., Lalueza-Fox, C., Huguet, R., Ortiz, J. E., Julià, R., Soler, V., de Torres, T., Martínez, E., Canaveras, J. C., Sánchez-Moral, S., Cuezva, S., Lario, J., Santamaría, D., de la Rasilla, M. & Fortea, J. (2006) Paleobiology and comparative morphology of a late Neandertal sample from El Sidrón, Asturias, Spain. Proceedings of the National Academy of Sciences USA 103:19266–71.Google Scholar
Ross, E. D. & Mesulam, M.-M. (1979) Dominant language functions of the right hemisphere? Archives of Neurology 36:144–48.Google Scholar
Ross, E. D. & Monnot, M. (2008) Neurology of affective prosody and its functional-anatomic organization in right hemisphere. Brain and Language 104:5174.Google Scholar
Roush, R. S. & Snowdon, C. T. (1994) Ontogeny of food-associated calls in cotton-top tamarins. Animal Behaviour 47:263–73.Google Scholar
Roush, R. S. & Snowdon, C. T. (1999) The effects of social status on food-associated calling behaviour in captive cotton-top tamarins. Animal Behaviour 58:1299–305.Google Scholar
Roy, S., Miller, C. T., Gottsch, D. & Wang, X. (2011) Vocal control by the common marmoset in the presence of interfering noise. Journal of Experimental Biology 214:3619–29.Google Scholar
Rubens, A. B. (1975) Aphasia with infarction in the territory of the anterior cerebral artery. Cortex 11:239–50.Google Scholar
Rukstalis, M., Fite, J. E. & French, J. A. (2003) Social change affects vocal structure in a callitrichid primate (Callithrix kuhlii). Ethology 109:327–40.Google Scholar
Satoh, T., Nakai, S., Sato, T. & Kimura, M. (2003) Correlated coding of motivation and outcome of decision by dopamine neurons. Journal of Neuroscience 23:9913–23.Google Scholar
Savage-Rumbaugh, S., Fields, W. M. & Spircu, T. (2004) The emergence of knapping and vocal expression embedded in a Pan/Homo culture. Biology and Philosophy 19:541–75.Google Scholar
Scharff, C. & Haesler, S. (2005) An evolutionary perspective on FoxP2: Strictly for the birds? Current Opinion in Neurobiology 15:694703.Google Scholar
Scherer, K. R. (1986) Vocal affect expression: A review and a model for future research. Psychological Bulletin 99:143–65.Google Scholar
Scherer, K. R., Johnstone, T. & Klasmeyer, G. (2009) Vocal expression of emotion. In: Handbook of affective sciences, ed. Davidson, R. J., Scherer, K. R. & Goldsmith, H. Hill, pp. 433–56. Oxford University Press.Google Scholar
Schultz, W. (2006) Behavioral theories and the neurophysiology of reward. Annual Review of Psychology 57:87115.Google Scholar
Schultz, W. (2007) Behavioral dopamine signals. Trends in Neurosciences 30:203–10.Google Scholar
Schultz, W. (2010) Dopamine signals for reward value and risk: Basic and recent data. Behavioral and Brain Functions 6:24.Google Scholar
Schulz, G. M., Varga, M., Jeffires, K., Ludlow, C. L. & Braun, A. R. (2005) Functional neuroanatomy of human vocalization: An H2 15O PET study. Cerebral Cortex 15:1835–47.Google Scholar
Seeley, W. W. (2008) Selective functional, regional, and neuronal vulnerability in frontotemporal dementia. Current Opinion in Neurology 21:701707.Google Scholar
Seyfarth, R. M. & Cheney, D. L. (2003b) Signalers and receivers in animal communication. Annual Review of Psychology 54:145–73.Google Scholar
Seyfarth, R. M., Cheney, D. L. & Marler, P. (1980) Vervet monkey alarm calls: Semantic communication in a free-ranging primate. Animal Behaviour 28:1070–94.Google Scholar
Sherwood, C. C. (2005) Comparative anatomy of the facial motor nucleus in mammals, with an analysis of neuron numbers in primates. The Anatomical Record, Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology 287(1):1067–79.Google Scholar
Sherwood, C. C., Broadfield, D. C., Holloway, R. L., Gannon, P. J. & Hof, P. R. (2003) Variability of Broca's area homologue in African great apes: Implications for language evolution. The Anatomical Record, Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology 271:276–85.Google Scholar
Sherwood, C. C., Hof, P. R., Holloway, R. L., Semendeferi, K., Gannon, P. J., Frahm, H. D. & Zilles, K. (2005) Evolution of the brainstem orofacial motor system in primates: A comparative study of trigeminal, facial, and hypoglossal nuclei. Journal of Human Evolution 48:4584.Google Scholar
Shriberg, L. D., Aram, D. M. & Kwiatkowski, J. (1997) Developmental apraxia of speech: I. Descriptive and theoretical perspectives. Journal of Speech, Language, and Hearing Research 40:273–85.Google Scholar
Sidtis, J. J. & Van Lancker Sidtis, D. (2003) A neurobehavioral approach to dysprosody. Seminars in Speech and Language 24:93105.Google Scholar
Simonyan, K. & Jürgens, U. (2002) Cortico-cortical projections of the motorcortical larynx area in the rhesus monkey. Brain Research 949:2331.Google Scholar
Simonyan, K. & Jürgens, U. (2005) Afferent subcortical connections into the motor cortical larynx area in the rhesus monkey. Neuroscience 130:119–31.Google Scholar
Skodda, S., Grönheit, W. & Schlegel, U. (2011) Intonation and speech rate in Parkinson's disease: General and dynamic aspects and responsiveness to levodopa admission. Journal of Voice 25:199205.Google Scholar
Skodda, S., Rinsche, H. & Schlegel, U. (2009) Progression of dysprosody in Parkinson's disease over time – a longitudinal study. Movement Disorders 24:716–22.Google Scholar
Smith, A. (2010) Development of neural control of orofacial movements for speech. In: The handbook of phonetic sciences, 2nd edition, ed. Hardcastle, W. J., Laver, J. & Gibbon, F. E., pp. 251–96. Wiley-Blackwell.Google Scholar
Smith, W. K. (1945) The functional significance of the rostral cingulate cortex as revealed by its responses to electrical excitation. Journal of Neurophysiology 8:241–55.Google Scholar
Snowdon, C. T. (2008) Contextually flexible communication in nonhuman primates. In: Evolution of communicative flexibility: Complexity, creativity, and adaptability in human and animal communication, ed. Oller, D. K. & Griebel, U., pp. 7191. MIT Press.Google Scholar
Snowdon, C. T. & Elowson, A. M. (1999) Pygmy marmosets modify call structure when paired. Ethology 105:893908.Google Scholar
Solano, A., Roig, M., Vives-Bauza, C., Hernandez-Peña, J., Garcia-Arumi, E., Playan, A., Lopez-Perez, M. J., Andreu, A. L. & Montoya, J. (2003) Bilateral striatal necrosis associated with a novel mutation in the mitochondrial ND6 gene. Annals of Neurology 54:527–30.Google Scholar
Sperli, F., Spinelli, L., Pollo, C. & Seeck, M. (2006) Contralateral smile and laughter, but no mirth, induced by electrical stimulation of the cingulate cortex. Epilepsia 47:440–43.Google Scholar
Striedter, G. F. (2005) Principles of brain evolution. Sinauer.Google Scholar
Stringer, C. (2012) Lone survivors: How we came to be the only humans on earth. Times Books, Henry Holt.Google Scholar
Struhsaker, T. T. (1967) Auditory communication among vervet monkeys (Cercopithecus aethiops). In: Social communication among primates, ed. Altmann, S. A., pp. 281324. University of Chicago Press.Google Scholar
Sugiura, H. (1998) Matching of acoustic features during the vocal exchange of coo calls by Japanese macaques. Animal Behaviour 55:673–87.Google Scholar
Surmeier, D. J., Day, M., Gertler, T., Chan, S. & Shen, W. (2010a) D1 and D2 dopamine receptor modulation of glutamatergic signaling in striatal medium spiny neurons. In: Handbook of basal ganglia structure and function, ed. Steiner, H., Tseng, K. Y., pp. 113–32. Elsevier.Google Scholar
Surmeier, D. J., Day, M., Gertler, T.S, Chan, C. S. & Shen, W. (2010b) Dopaminergic modulation of striatal glutamatergic signaling in health and Parkinson's disease. In: Dopamine handbook, ed. Iversen, L. L., Iversen, S. D., Dunnett, S. B. & Björklund, A., pp. 349–67. Oxford University Press.Google Scholar
Sutton, D., Larson, C. & Lindeman, R. C. (1974) Neocortical and limbic lesion effects on primate phonation. Brain Research 71:6175.Google Scholar
Sutton, D., Larson, C., Taylor, E. M. & Lindeman, R. C. (1973) Vocalization in rhesus monkeys: Conditionability. Brain Research 52:225–31.Google Scholar
Sutton, D., Trachy, R. E. & Lindeman, R. C. (1981) Vocal and nonvocal discriminative performance in monkeys. Brain and Language 14:93105.Google Scholar
Sutton, D., Trachy, R. E. & Lindeman, R. C. (1985) Discriminative phonation in macaques: Effects of anterior mesial cortex damage. Experimental Brain Research 59:410–13.Google Scholar
Taglialatela, J. P., Savage-Rumbaugh, S. & Baker, L. A. (2003) Vocal production by a language-competent Pan paniscus . International Journal of Primatology 24:117.Google Scholar
Tallerman, M. & Gibson, K. R. (2012) The Oxford handbook of language evolution. Oxford University Press. (Oxford Handbooks in Linguistics Series).Google Scholar
Talmage-Riggs, G., Winter, P., Ploog, D. & Mayer, W. (1972) Effect of deafening on the vocal behavior of the squirrel monkey (Saimiri sciureus). Folia Primatologica 17:404–20.Google Scholar
Taylor, J. (2009) Not a chimp: The hunt to find the genes that make us human. Oxford University Press.Google Scholar
Teramitsu, I., Poopatanapong, A., Torrisi, S. & White, S. A. (2010) Striatal FoxP2 is actively regulated during songbird sensorimotor learning. PLoS ONE 5:e8548.Google Scholar
Thyagarajan, D., Shanske, S., Vazquez-Memije, M., DeVivo, D. & DiMauro, S. (1995) A novel mitochondrial ATPase 6 point mutation in familial bilateral striatal necrosis. Annals of Neurology 38:468–72.Google Scholar
Tomasello, M. (2008) Origins of human communication. MIT Press.Google Scholar
Trachy, R. E., Sutton, D. & Lindeman, R. C. (1981) Primate phonation: Anterior cingulate lesion effects on response rate and acoustical structure. American Journal of Primatology 1:4355.Google Scholar
Turner, V. (1967) The forest of symbols: Aspects of Ndembu ritual. Cornell University Press.Google Scholar
Tuttle, R. H. (2007) Apes, intelligent science, and conservation. In: Primate perspectives on behavior and cognition, ed. Washburn, D. A., pp. 1728. American Psychological Association.Google Scholar
Ungerleider, L. G., Doyon, J. & Karni, A. (2002) Imaging brain plasticity during motor skill learning. Neurobiology of Learning and Memory 78:553–64.Google Scholar
Van Lancker Sidtis, D., Pachana, N., Cummings, J. L. & Sidtis, J. J. (2006) Dysprosodic speech following basal ganglia insult: Toward a conceptual framework for the study of the cerebral representation of prosody. Brain and Language 97:135–53.Google Scholar
van Schaik, C. P., Ancrenaz, M., Borgen, G., Galdikas, B., Knott, C. D., Singleton, I., Suzuki, A., Utami, S. S. & Merrill, M. (2003) Orangutan cultures and the evolution of material culture. Science 299:102105.Google Scholar
van Schaik, C. P., van Noordwijk, M. A., & Wich, S. A. (2006) Innovation in wild Bornean orangutans (Pongo pygmaeus wurmbii). Behaviour 143:839–76.Google Scholar
Vargha-Khadem, F., Gadian, D. G., Copp, A. & Mishkin, M. (2005) FOXP2 and the neuroanatomy of speech and language. Nature Reviews Neuroscience 6:131–38.Google Scholar
Vargha-Khadem, F. & Passingham, R. (1990) Speech and language defects. Nature 346(6281):226.Google Scholar
Vargha-Khadem, F., Watkins, K. E., Alcock, K. J., Fletcher, P. & Passingham, R.E. (1995) Praxic and nonverbal cognitive deficits in a large family with a genetically transmitted speech and language disorder. Proceedings of the National Academy of Sciences USA 92:930–33.Google Scholar
Vargha-Khadem, F., Watkins, K. E., Price, C. J., Ashburner, J., Alcock, K. J., Connelly, A., Frackowiak, R. S. J., Friston, K. J., Pembrey, M. E., Mishkin, M., Gadian, D. G. & Passingham, R. E. (1998) Neural basis of an inherited speech and language disorder. Proceedings of the National Academy of Sciences USA 95:12695–700.Google Scholar
Vogt, B. A. & Barbas, H. (1988) Structure and connections of the cingulate vocalization region in the rhesus monkey. In: The physiological control of mammalian vocalization, ed. Newman, J. D., pp. 203–25. Plenum Press.Google Scholar
Voorn, P., Vanderschuren, L. J. M. J., Groenewegen, H. J., Robbins, T. W. & Pennartz, C. M. A. (2004) Putting a spin on the dorsal–ventral divide of the striatum. Trends in Neurosciences 27:468–74.Google Scholar
Wallman, J. (1992) Aping language. Cambridge University Press.Google Scholar
Walters, J. R. & Bergstrom, D. A. (2010) Synchronous activity in basal ganglia circuits. In: Handbook of basal ganglia structure and function, ed. Steiner, H. & Tseng, K. Y., pp. 429–43. Elsevier.Google Scholar
Watkins, K. E., Dronkers, N. F. & Vargha-Khadem, F. (2002a) Behavioural analysis of an inherited speech and language disorder: Comparison with acquired aphasia. Brain: A Journal of Neurology 125(Pt. 3):452–64.Google Scholar
Watkins, K. E., Gadian, D. G. & Vargha-Khadem, F. (1999) Functional and structural brain abnormalities associated with a genetic disorder of speech and language. American Journal of Human Genetics 65:1215–21.Google Scholar
Watkins, K. E., Vargha-Khadem, F., Ashburner, J., Passingham, R. E., Connelly, A., Friston, K. J., Frackowiak, R. S., Mishkin, M. & Gadian, D. G. (2002b) MRI analysis of an inherited speech and language disorder: Structural brain abnormalities. Brain 125 (Pt. 3):465–78.Google Scholar
Watson, R. T., Fleet, W. S., Gonzalez-Rothi, L. & Heilman, K. M. (1986) Apraxia and the supplementary motor area. Archives of Neurology 43:787–92.Google Scholar
Weaver, T. D., Roseman, C. C. & Stringer, C. B. (2008) Close correspondence between quantitative- and molecular-genetic divergence times for Neandertals and modern humans. Proceedings of the National Academy of Sciences USA 105:4645–49.Google Scholar
Weismer, G. (1980) Control of the voicing distinction for intervocalic stops and fricatives: Some data and theoretical considerations. Journal of Phonetics 8:427–38.Google Scholar
West, R. A. & Larson, C. R. (1995) Neurons of the anterior mesial cortex related to faciovocal activity in the awake monkey. Journal of Neurophysiology 74:1856–69.Google Scholar
Whitty, C. W. M. (1955) Effects of anterior cingulectomy in man. Proceedings of the Royal Society of Medicine 48:463–69.Google Scholar
Wich, S. A. & de Vries, H. (2006) Male monkeys remember which group members have given alarm calls. Proceedings of the Royal Society of London, Series B: Biological Sciences 273:735–40.Google Scholar
Wich, S. A., Swartz, K., Hardus, M. E., Lameira, A. R., Stromberg, E. & Shumaker, R. (2009) A case of spontaneous acquisition of a human sound by an orangutan. Primates 50:5664.Google Scholar
Wichmann, T. & DeLong, M. R. (2007) Epidemiology of Parkinson's disease. In: Parkinson's disease and related disorders, Part 1, ed. Koller, W. C. & Melamed, E., pp. 318. (Handbook of Clinical Neurology, vol. 83, 3rd series). Elsevier Press.Google Scholar
Wickens, J. R., Horvitz, J. C., Costa, R. M. & Killcross, S. (2007) Dopaminergic mechanisms in actions and habits. Journal of Neuroscience 27:8181–83.Google Scholar
Wild, B., Rodden, F. A., Grodd, W. & Ruch, W. (2003) Neural correlates of laughter and humour. Brain 126:2121–38.Google Scholar
Wild, J. M. (2008) Birdsong: Anatomical foundations and central mechanisms of sensorimotor integration, In: Neuroscience of birdsong, ed. Zeigler, H. P. & Marler, P., pp. 136–51. Cambridge University Press.Google Scholar
Wildgruber, D., Ackermann, H., Kreifelts, B. & Ethofer, T. (2006) Cerebral processing of linguistic and emotional prosody: fMRI studies. In: Understanding emotions, ed. Anders, S., Ende, G., Junghofer, M., Kissler, J. & Wildgruber, D., pp. 249–68. (Series: Progress in Brain Research, vol. 156). Elsevier.Google Scholar
Willuhn, I. & Steiner, H. (2008) Motor-skill learning in a novel running-wheel task is dependent on D1 dopamine receptors in the striatum. Neuroscience 153:249–58.Google Scholar
Winter, P., Handley, P., Ploog, D. & Schott, D. (1973) Ontogeny of squirrel monkey calls under normal conditions and under acoustic isolation. Behaviour 47:230–39.Google Scholar
Winter, P., Ploog, D. & Latta, J. (1966) Vocal repertoire of the squirrel monkey (Saimiri sciureus), its analysis and significance. Experimental Brain Research 1:359–84.Google Scholar
Wu, T. & Hallett, M. (2005) A functional MRI study of automatic movements in patients with Parkinson's disease. Brain 128:2250–59.Google Scholar
Wu, T., Kansaku, K. & Hallett, M. (2004) How self-initiated memorized movements become automatic: A functional MRI study. Journal of Neurophysiology 91:1690–98.Google Scholar
Yin, H. H., Mulcare, S. P., Hilário, M. R. F., Clouse, E., Holloway, T., Davis, M. I., Hansson, A. C., Lovinger, D. M. & Costa, R. M. (2009) Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nature Neuroscience 12:333–41.Google Scholar
Zhang, J., Webb, D. M. & Podlaha, O. (2002) Accelerated protein evolution and origins of human-specific features: FOXP2 as an example. Genetics 162:1825–35.Google Scholar
Zhang, S. P., Davis, P. J., Bandler, R. & Carrive, P. (1994) Brain stem integration of vocalization: Role of the midbrain periaqueductal gray. Journal of Neurophysiology 72:1337–56.Google Scholar
Ziegler, W. (2008) Apraxia of speech. In: Neuropsychology and behavioral neurology, ed. Goldenberg, G. & Miller, B. L., pp. 269–85. (Handbook of clinical neurology, vol. 88, 3rd series). Elsevier Press.Google Scholar
Ziegler, W. (2010) Apraxic failure and the hierarchical structure of speech motor plans: A nonlinear probabilistic model. In: Assessment of motor speech disorders, ed. Lowit, A. & Kent, R. D., pp. 305–23. Plural Publishing.Google Scholar
Ziegler, W., Aichert, I. & Staiger, A. (2012) Apraxia of speech: Concepts and controversies. Journal of Speech, Language, and Hearing Research 55:S1485–501.Google Scholar
Ziegler, W., Kilian, B. & Deger, K. (1997) The role of the left mesial frontal cortex in fluent speech: Evidence from a case of left supplementary motor area hemorrhage. Neuropsychologia 35:1197–208.Google Scholar
Zuberbühler, K. (2000a) Causal cognition in a nonhuman primate: Field playback experiments with Diana monkeys. Cognition 76(3):195207.Google Scholar
Zuberbühler, K., Cheney, D. L. & Seyfarth, R. M. (1999) Conceptual semantics in a nonhuman primate. Journal of Comparative Psychology 113:3342.Google Scholar
Zuberbühler, K. & Jenny, D. (2007) Interaction between leopard and monkeys. In: Monkeys of the Taï Forest: An African primate community, ed. McGraw, W. S., Zuberbühler, K., & Noe, R., pp. 133–54. Cambridge University Press.Google Scholar