Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T21:12:58.209Z Has data issue: false hasContentIssue false

Vocal communication is multi-sensorimotor coordination within and between individuals

Published online by Cambridge University Press:  17 December 2014

Daniel Y. Takahashi
Affiliation:
Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544. [email protected] Department of Psychology, Princeton University, Princeton, NJ 08544.
Asif A. Ghazanfar
Affiliation:
Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544. [email protected] Department of Psychology, Princeton University, Princeton, NJ 08544. Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544. [email protected]/~asifg

Abstract

Speech is an exquisitely coordinated interaction among effectors both within and between individuals. No account of human communication evolution that ignores its foundational multisensory characteristics and cooperative nature will be satisfactory. Here, we describe two additional capacities – rhythmic audiovisual speech and cooperative communication – and suggest that they may utilize the very same or similar circuits as those proposed for vocal learning.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, H. & Riecker, A. (2004) The contribution of the insula to motor aspects of speech production: A review and a hypothesis. Brain and Language 89:320–28.Google Scholar
Bauernfiend, A. L., de Sousa, A. A., Avasthi, T., Dobson, S. D., Raghanti, M. A., Lewandowski, A. H., Zilles, K., Semendeferi, K., Allman, J. M., Craig, A. D., Hof, P. R. & Sherwood, C. C. (2013) A volumetric comparison of the insular cortex and its subregions in primates. Journal of Human Evolution 64:263–79.CrossRefGoogle Scholar
Bergman, T. J. (2013) Speech-like vocalized lip-smacking in geladas. Current Biology 23(7):R268–69.CrossRefGoogle ScholarPubMed
Bohland, J. W. & Guenther, F. H. (2006) An fMRI investigation of syllable sequence production. NeuroImage 2:821–41.CrossRefGoogle Scholar
Burkart, J. M., Hrdy, S. B. & van Schaik, C. P. (2009a) Cooperative breeding and human cognitive evolution. Evolutionary Anthropology 18:175–86.Google Scholar
Caruana, F., Jezzini, A., Sbriscia-Fioretti, B., Rizzolatti, G. & Gallese, V. (2011) Emotional and social behaviors elicited by electrical stimulation of the insula in the macaque monkey. Current Biology 21:195–99.Google Scholar
Chandrasekaran, C., Lemus, L., Trubanova, A., Gondan, M. & Ghazanfar, A. A. (2011) Monkeys and humans share a common computation for face/voice integration. PLOS Computational Biology 7(9):e1002165.Google Scholar
Chandrasekaran, C., Trubanova, A., Stillittano, S., Caplier, A. & Ghazanfar, A. A. (2009) The natural statistics of audiovisual speech. PLOS Computational Biology 5:e1000436.Google Scholar
Dronkers, N. F. (1996) A new brain region for coordinating speech articulation. Nature 384(6605):159–61. doi: 10.1038/384159a0.Google Scholar
Fernandez-Duque, E., Valeggia, C. R. & Mendoza, S. P. (2009) The biology of paternal care in human and nonhuman primates. Annual Review of Anthropology 38:115–30.Google Scholar
Ferrari, P. F., Paukner, A., Ionica, C. & Suomi, S. J. (2009) Reciprocal face-to-face communication between rhesus macaque mothers and their newborn infants. Current Biology 19:1768–72.Google Scholar
Ghazanfar, A. A. (2013) Multisensory vocal communication in primates and the evolution of rhythmic speech. Behavioral Ecology and Sociobiology 67(9):1441–48.Google Scholar
Ghazanfar, A. A., Chandrasekaran, C. & Morrill, R. J. (2010) Dynamic, rhythmic facial expressions and the superior temporal sulcus of macaque monkeys: Implications for the evolution of audiovisual speech. European Journal of Neuroscience 31:1807–17.Google Scholar
Ghazanfar, A. A. & Logothetis, N. K. (2003) Facial expressions linked to monkey calls. Nature 423(6943):937–38.Google Scholar
Ghazanfar, A. A. & Poeppel, D. (2014) The neurophysiology and evolution of the speech rhythm. In: The cognitive neurosciences V (5th edition), ed. Gazzaniga, M. S. & Mangun, G. R., pp. 629–38. MIT Press.Google Scholar
Ghazanfar, A. A. & Rendall, D. (2008) Evolution of human vocal production. Current Biology 18(11):R457–60.Google Scholar
Ghazanfar, A. A., Takahashi, D. Y., Mathur, N. & Fitch, W. T. (2012) Cineradiography of monkey lipsmacking reveals the putative origins of speech dynamics. Current Biology 22:1176–82.Google Scholar
Ghazanfar, A. A., Turesson, H. K., Maier, J. X., van Dinther, R., Patterson, R. D. & Logothetis, N. K. (2007) Vocal tract resonances as indexical cues in rhesus monkeys. Current Biology 17:425–30.Google Scholar
Greenberg, S., Carvey, H., Hitchcock, L. & Chang, S. (2003) Temporal properties of spontaneous speech – a syllable-centric perspective. Journal of Phonetics 31 (3–4):465–85.Google Scholar
Habbershon, H. M., Ahmed, S. Z. & Cohen, Y. E. (2013) Rhesus macaques recognize unique multimodal face-voice relations of familiar individuals and not of unfamiliar ones. Brain, Behavior, and Evolution 81:219–25.Google Scholar
Hasson, U., Ghazanfar, A. A., Galantucci, B., Garrod, S. & Keysers, C. (2012) Brain-to-brain coupling: A mechanism for creating and sharing a social world. Trends in Cognitive Sciences 16(2):114–21.Google Scholar
Jordan, K. E., Brannon, E. M., Logothetis, N. K. & Ghazanfar, A. A. (2005) Monkeys match the number of voices they hear with the number of faces they see. Current Biology 15:1034–38.Google Scholar
Lund, J. P. & Kolta, A. (2006) Brainstem circuits that control mastication: Do they have anything to say during speech? Journal of Communication Disorders 39:381–90.Google Scholar
MacNeilage, P. F. (1998) The frame/content theory of evolution of speech production. Behavioral and Brain Sciences 21(4):499511.CrossRefGoogle ScholarPubMed
Morrill, R. J., Paukner, A., Ferrari, P. F. & Ghazanfar, A. A. (2012) Monkey lip-smacking develops like the human speech rhythm. Developmental Science 15:557–68.Google Scholar
Rizzolatti, G. & Arbib, M. A. (1998) Language within our grasp. Trends in Neurosciences 21:188–94.Google Scholar
Sliwa, J., Duhamel, J. R., Pascalis, O. & Wirth, S. (2011) Spontaneous voice-face identity matching by rhesus monkeys for familiar conspecifics and humans. Proceedings of the National Academy of Sciences USA 108:1735–40.CrossRefGoogle ScholarPubMed
Stivers, T., Enfield, N. J., Brown, P., Englert, C., Hayashi, M., Heinemann, T., Hoymann, G., Rossano, F., de Ruiter, J. P., Yoon, K. E. & Levinson, S. C. (2009) Universals and cultural variation in turn-taking in conversation. Proceedings of the National Academy of Sciences USA 106:10587–92.CrossRefGoogle ScholarPubMed
Syal, S. & Finlay, B. L. (2011) Thinking outside the cortex: Social motivation in the evolution and development of language. Developmental Science 14:417–30.Google Scholar
Takahashi, D. Y., Narayanan, D. Z. & Ghazanfar, A. A. (2013) Coupled oscillator dynamics of vocal turn-taking in monkeys. Current Biology 23:2162–68.Google Scholar
Tomasello, M. (2008) Origins of human communication. MIT Press.Google Scholar
Van Hooff, J. A. R. A. M. (1962) Facial expressions of higher primates. Symposium of the Zoological Society, London 8:97125.Google Scholar