Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T06:38:55.956Z Has data issue: false hasContentIssue false

Monkeys in space: Primate neural data suggest volumetric representations

Published online by Cambridge University Press:  08 October 2013

Sidney R. Lehky
Affiliation:
Computational Neurobiology Laboratory, The Salk Institute, La Jolla, CA 92037. [email protected]://www.snl.salk.edu/~sidney/
Anne B. Sereno
Affiliation:
Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, TX 77030. [email protected]://nba.uth.tmc.edu/homepage/sereno/sereno/index.htm
Margaret E. Sereno
Affiliation:
Department of Psychology, University of Oregon, Eugene, OR 94703. [email protected]://psychweb.uoregon.edu/~serenolab/

Abstract

The target article does not consider neural data on primate spatial representations, which we suggest provide grounds for believing that navigational space may be three-dimensional rather than quasi–two-dimensional. Furthermore, we question the authors' interpretation of rat neurophysiological data as indicating that the vertical dimension may be encoded in a neural structure separate from the two horizontal dimensions.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blohm, G., Keith, G. P. & Crawford, J. D. (2009) Decoding the cortical transformations for visually guided reaching in 3D space. Cerebral Cortex 19:1372–93.CrossRefGoogle Scholar
Breveglieri, R., Hadjidimitrakis, K., Bosco, A., Sabatini, S. P., Galletti, C. & Fattori, P. (2012) Eye position encoding in three-dimensional space: Integration of version and vergence signals in the medial posterior parietal cortex. Journal of Neuroscience 32:159–69.CrossRefGoogle ScholarPubMed
Epstein, R. A. (2008) Parahippocampal and retrosplenial contributions to human spatial navigation. Trends in Cognitive Sciences 12:388–96.CrossRefGoogle ScholarPubMed
Georges-François, P., Rolls, E. T. & Robertson, R. G. (1999) Spatial view cells in the primate hippocampus: Allocentric view not head direction or eye position or place. Cerebral Cortex 9:197212.CrossRefGoogle ScholarPubMed
Goodale, M. A. & Milner, A. D. (1992) Separate visual pathways for perception and action. Trends in Neurosciences 15:2025.CrossRefGoogle ScholarPubMed
Hadjidimitrakis, K., Breveglieri, R., Bosco, A. & Fattori, P. (2012) Three-dimensional eye position signals shape both peripersonal space and arm movement activity in the medial posterior parietal cortex. Frontiers in Integratve Neuroscience 6:37. doi: 10.3389/fnint.2012.00037.Google ScholarPubMed
Kravitz, D. J., Saleem, K. S., Baker, C. I. & Mishkin, M. (2011) A new neural framework for visuospatial processing. Nature Reviews Neuroscience 12(4):217–30.CrossRefGoogle ScholarPubMed
Lehky, S. R. & Sereno, A. B. (2011) Population coding of visual space: Modeling. Frontiers in Computational Neuroscience 4:155. doi:110.3389/fncom.2010.00155.CrossRefGoogle ScholarPubMed
Pouget, A., Deneve, S., Ducom, J.-C. & Latham, P. E. (1999) Narrow versus wide tuning curves: What's best for a population code? Neural Computation 11:8590.CrossRefGoogle ScholarPubMed
Rolls, E. T. (1999) Spatial view cells and the representation of place in the primate hippocampus. Hippocampus 9:467–80.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Sereno, A. B. & Lehky, S. R. (2011) Population coding of visual space: Comparison of spatial representations in dorsal and ventral pathways. Frontiers in Computational Neuroscience 4:159. doi:110.3389/fncom.2010.00159.CrossRefGoogle ScholarPubMed
Zhang, K. & Sejnowski, T. J. (1999) Neural tuning: To broaden or to sharpen? Neural Computation 11:7584.CrossRefGoogle ScholarPubMed