The aim of this work is to show that, though 3D effects should be invoked to explain the less regular arc-like regions, the internal knotty emissions may be explained through a roughly axisymmetric pattern of oblique shocks.
To this purpose, numerical simulations of non-equilibrium, radiative, hydrodynamical jets in axisymmetric geometry have been performed. After showing that the internal reflecting waves, travelling in the beam of a stellar jet, steepen into oblique shocks, we verify that the optical emission arising from the shocked regions is in good agreement with observations.
Since the optical emission strongly depends on the physical and chemical parameters, (namely temperature and electron densities inside the emitting regions), special care is devoted to solving the energy transport equation.