Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-03T08:27:44.115Z Has data issue: false hasContentIssue false

Jets, Disk Winds, and Warm Disk Coronae in Classical T Tauri Stars

Published online by Cambridge University Press:  25 May 2016

John Kwan*
Affiliation:
Department of Physics and Astronomy, University of Massachusetts, Amherst, MA 01003, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Arguments, based on analysis of the forbidden line emission, are summarized that point to two components of mass ejection in classical T Tauri stars. A low-speed wind originates from the accretion disk at between ∼ 0.05 AU and ≳3 AU from the star, and a high-speed flow, which becomes collimated into a jet within ≲ 100 AU, originates as a wind from either the star or the very inner part of the accretion disk. The [OI] λ5577 emission in the low-speed component also requires the presence of a warm disk corona, with an electron density of ∼ 107 cm–3 and a temperature of ∼ 8000 K. Additional indication of a warm disk corona comes from analysis of the central absorptions seen in the profiles of the hydrogen Balmer lines. The need to heat the disk corona implies that a substantial fraction of the energy released in the accretion of matter through the disk may be dissipated at the disk surface.

Type
IV. Disks, Winds, and Magnetic Fields
Copyright
Copyright © Kluwer 1997 

References

Appenzeller, I., Jankovics, I., & Östreicher, R. 1984, A&A, 141, 108.Google Scholar
Balbus, S. A., & Hawley, J. F. 1991, ApJ, 376, 214.Google Scholar
Edwards, S., Cabrit, S., Strom, S. E., Heyer, I., Strom, K. M., & Anderson, E. 1987, ApJ, 321, 473.Google Scholar
Edwards, S., Hartigan, P., Ghandour, L., & Andrulis, C. 1994, AJ, 108, 1056 (EHGA).Google Scholar
Ferreira, J., Pelletier, G., Appl, S.: 1997, in Low Mass Star Formation - from Infall to Outflow, poster proceedings of IAU Symp. No. 182, eds. Malbet, F. & Castets, A., Observ. de Grenoble, p. 112.Google Scholar
Hamann, F. 1994, ApJS, 93, 485.Google Scholar
Hartigan, P., Edwards, S., & Ghandour, L. 1995, ApJ, 452, 736 (HEG).Google Scholar
Hartmann, L., Hewett, R., & Calvet, N. 1994, ApJ, 426, 669.CrossRefGoogle Scholar
Hartmann, L., & Raymond, J. 1989, ApJ, 337, 903.Google Scholar
Hirth, G., Mundt, R., & Solf, J. 1994, A&A, 285, 929.Google Scholar
Kwan, J. 1997, ApJ, submitted.Google Scholar
Kwan, J., & Alonso-Costa, J. L. 1988, ApJ, 330, 870.CrossRefGoogle Scholar
Kwan, J., & Tademaru, E. 1988, ApJ, 332, L41.Google Scholar
Kwan, J., & Tademaru, E. 1995, ApJ, 454, 382 (KT).CrossRefGoogle Scholar
Neuhäuser, R., Sterzik, M. F., Schmitt, J. H. M., Wichmann, R., & Krautter, J. 1995, A&A, 299, 391.Google Scholar
Ouyed, R., & Pudritz, R. E. 1994, ApJ, 423, 753.Google Scholar
Paatz, G., Appl, S.: 1997, in Low Mass Star Formation - from Infall to Outflow, poster proceedings of IAU Symp. No. 182, eds. Malbet, F. & Castets, A., Observ. de Grenoble, p. 303.Google Scholar
Safier, P. N. 1993, ApJ, 408, 148.Google Scholar
Solf, J., & Böhm, K. H. 1993, ApJ, 410, L31.Google Scholar