Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T03:57:40.750Z Has data issue: false hasContentIssue false

On the Energetics and Momentum Distribution of Bow Shocks and Colliding Winds

Published online by Cambridge University Press:  25 May 2016

Francis P. Wilkin
Affiliation:
Department of Astronomy, University of California, Berkeley, CA, 94720 USA
Jorge Cantó
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Ap. 70-264, 04510 México, D.F., MéXICO
Alex C. Raga
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Ap. 70-264, 04510 México, D.F., MéXICO

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss recent progress in analytic modeling of stellar wind bow shocks and colliding winds. For thin, radiative shocked layers in steady-state, the shape of the layer as well as its internal flux of mass and momentum are found from the conservation laws of mass, momentum and angular momentum. For the case that the shocked gas is well-mixed, the velocity distribution and mass column density of shocked material are also obtained. These solutions are extended to the problem of a jet bow shock, treated as a non-isotropic “wind” interacting with the ambient medium. We also examine the shell energetics for these simple analytic models. The constraint of conservation of momentum leads to an upper limit to the efficiency of thermalization and radiation of the pre-shock wind kinetic energy. Calculations are presented of this thermalization rate as a function of the input momentum rates of the pre-shock winds.

Type
III. Theoretical Models
Copyright
Copyright © Kluwer 1997 

References

Aldcroft, T.L., Romani, R.W., & Cordes, J.M. 1992, ApJ 400, 638.Google Scholar
Baranov, V. B., Krasnobaev, K. V., & Kulikovskii, A. G. 1971, Sov. Phys. Dokl., 15, 791.Google Scholar
Cantó, J., Raga, A.C., & Wilkin, F.P. 1996, ApJ, 469, 729.Google Scholar
Dyson, J. 1975, AP&SS, 35, 299.Google Scholar
Henney, W.J., Raga, A.C., Lizano, S., & Curiel, S. 1996, ApJ 465, 216.Google Scholar
Henney, W.J. 1996, RMxAA, 29, 192.Google Scholar
Henney, W.J. 1997, This proceeding.Google Scholar
Houpis, H.L.F. & Mendis, D.A. 1980, ApJ, 239, 1980.CrossRefGoogle Scholar
Lada, C.J., & Fich, M. 1996, ApJ 459, 638.Google Scholar
Mac Low, M.-M., Van Buren, D., Wood, D. O. S., & Churchwell, E. 1991, ApJ, 369, 395.Google Scholar
Raga, A. C., & Cabrit, S. 1993, A&A, 278, 267.Google Scholar
Van Buren, D., Mac Low, M.-M., Wood, D. O. S., & Churchwell, E. 1990, ApJ, 353, 570.Google Scholar
Wilkin, F.P. 1996, ApJ, 459, L31.Google Scholar
Wilkin, F.P. 1997a, in Low Mass Star Formation - from Infall to Outflow, Poster Proceedings of the IAU Symposium No 182, Eds. Malbet, F. and Castets, A., (Observatoire de Grenoble), p190.Google Scholar
Wilkin, F.P. 1997b, (In Preparation).Google Scholar
Wilkin, F.P., Cantó, J. & Raga, A.C. 1997, (In Preparation).Google Scholar
Zhang, Q. & Zheng, X. 1997, ApJ, 474, 719.Google Scholar