Health nudge interventions to steer people into healthier lifestyles are increasingly applied by governments worldwide, and it is natural to look to such approaches to improve health by altering what people choose to eat. However, to produce policy recommendations that are likely to be effective, we need to be able to make valid predictions about the consequences of proposed interventions, and for this, we need a better understanding of the determinants of food choice. These determinants include dietary components (e.g. highly palatable foods and alcohol), but also diverse cultural and social pressures, cognitive-affective factors (perceived stress, health attitude, anxiety and depression), and familial, genetic and epigenetic influences on personality characteristics. In addition, our choices are influenced by an array of physiological mechanisms, including signals to the brain from the gastrointestinal tract and adipose tissue, which affect not only our hunger and satiety but also our motivation to eat particular nutrients, and the reward we experience from eating. Thus, to develop the evidence base necessary for effective policies, we need to build bridges across different levels of knowledge and understanding. This requires experimental models that can fill in the gaps in our understanding that are needed to inform policy, translational models that connect mechanistic understanding from laboratory studies to the real life human condition, and formal models that encapsulate scientific knowledge from diverse disciplines, and which embed understanding in a way that enables policy-relevant predictions to be made. Here we review recent developments in these areas.