The X-ray powder diffraction spectrum of MoS2 with intercalated 5, 5, 7, 12, 12, 14-hexamethyl-1, 4, 8, 11-tetraazacyclotetradecane-1-acetic acid shows well-defined peaks as well as broad scattering. The X-ray scattering of this compound was simulated by generating model particles and calculating their X-ray scattering by evaluating the Debye sum. The match between the measured and simulated spectra was improved by trial-and-error. Matching the peak widths shows that the particles contain a total of about 6600 MoS2 units in about eight layers. The layers are oriented in the same direction (not turbostratic). However, they are translated randomly in the plane perpendicular to the stacking direction. In contrast to prior work on intercalation compounds, which considered various types of periodic reconstruction within the MoS2 layer, we obtain the best match with a non-periodic reconstruction in addition to a periodic superlattice. It involves dimer and trimer groupings of the molybdenum atoms with a random choice of centers. The intercalated tetraazamacrocycles form a two-dimensional glass. The effects of the key model assumptions on the calculated spectrum are demonstrated.