No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Polyhedral oligomeric silsesquioxane (POSS) based materials are a class of organic/inorganic hybrid nanomaterials with many interesting properties. Recent experiments have demonstrated that self-assembly of tethered POSS nanocubes is a promising route to the synthesis of novel materials with highly ordered, complex nanostructures. Using a coarsegrained model developed for tethered POSS, we perform molecular simulations of POSS molecules tethered by short polymers to investigate how the novel architecture of these hybrid building blocks can be exploited to achieve useful structures via self-assembly. We systematically explore the parameters that control the assembly process and the resulting equilibrium structures, including concentration, temperature, tethered POSS molecular topology, and solvent conditions. We report preliminary results of lamellar and cylindrical structures that are typically found in conventional block copolymer and surfactant systems, but with interesting modifications of the phase behavior caused by the bulkiness and cubic geometry of the POSS molecules.