Let
denote an indefinite quadratic form in n variables with real coefficients and with determinant Δn≠0. Blaney ([1], Theorem 2) proved that for any γ ≥0 there is a number Γ = Γ(γ, n) such that the inequalities
are soluble in integers x1, …, xn for any real α1, …, αn The object of this note is to establish an estimate for Γ as a function of γ. The result obtained, which is naturally only significant if γ is large, is as follows.