Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T07:28:44.207Z Has data issue: false hasContentIssue false

On extending Artin's conjecture to composite moduli

Published online by Cambridge University Press:  26 February 2010

Shuguang Li
Affiliation:
Department of Mathematics, Natural Sciences Division, University of Hawaii-Hilo, 200 W. Kawili Street, Hilo, HI 96720-4091.
Get access

Extract

It is well known that, if p is prime, the multiplicative group (ℤ/p)* of reduced residues is cyclic. A generator is called a primitive root; there are φ(p − 1) of them, where φ is Euler's function. Thus, (φ(p − 1)/(p−1) is the proportion of primitive roots modulo p in (ℤ/pℤ)*. Elliott has proved that φp − 1)/(p − 1) has a limiting distribution function [2], in the sense that

exists for all real numbers u.

Type
Research Article
Copyright
Copyright © University College London 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Carmichael, R. D.. The Theory of Numbers (Wiley, 1914).Google Scholar
2. Elliott, P. D. T. A.. Probabilistic number theory, vol. II (Springer, 1980).CrossRefGoogle Scholar
3. Goldfeld, M.. Artin's conjecture on the average. Mathematika, 15 (1968), 223226.CrossRefGoogle Scholar
4. Gupta, R. and Murty, M. Ram. A remark on Artin's conjecture. Invent. Math., 78 (1984), 127130.CrossRefGoogle Scholar
5. Halberstam, H. and Richert, H. E.. Sieve methods (Academic Press, 1974).Google Scholar
6. Heath-Brown, D. R.. Artin's conjecture for primitive roots. Quart. J. Math. Oxford (2), 37 (1986), 2738.CrossRefGoogle Scholar
7. Hooley, C.. On Artin's conjecture, J. reine angew. Math., 225 (1967), 209220.Google Scholar
8. Lagarias, J. C. and Odlyzko, A. M.. Effective Versions of the Chebotarev Density Theorem. In Algebraic Number fields, Frölich, A., eds. (Academic Press, 1967), 401463.Google Scholar
9. LeVeque, W. J.. Topics in Number Theory, vol. I (Addison-Wesley, 1956).Google Scholar
10. Li, S.. On the number of elements with maximal order in the multiplicative group modulo n. Ada Arithm., 86 (1998), 113132.Google Scholar
11. Li, S.. On Artin's conjecture for composite moduli. Doctorate dissertation, The University of Georgia, 1998.Google Scholar
12. Marcus, D. A.. Number fields (Springer, 1977).CrossRefGoogle Scholar
13. Martin, G.. The least prime primitive root and the shifted sieve. Ada Arith., 80 (1997), 277288.CrossRefGoogle Scholar
14. Norton, K. K.. On the number of restricted prime factors of an integer I. Illinois J. Math., 20 (1976), 681705.CrossRefGoogle Scholar
15. Pomerance, C.. On the distribution of amicable numbers. J. reine angew. Math., 293/294 (1977), 217222.Google Scholar
16. Stephens, P. J.. An average result for Artin's conjecture. Mathematika, 16 (1969), 178188.CrossRefGoogle Scholar
17. Tate, J. T.. Global class field theory. In Algebraic Number Theory, Cassels, J. W. S. and Frolich, A., eds. (Academic Press, 1967).Google Scholar
18. Western, A. E. and Miller, J. C. P.. Tables of Indices and Primitive roots. Royal Society Mathematical Tables, vol. 9, p. xxxviii (Cambridge, 1968).Google Scholar