We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let Ω0 be a polygon in $\mathbb{R}$2, or more generally a compact surface with piecewise smooth boundary and corners. Suppose that Ωε is a family of surfaces with ${\mathcal C}$∞ boundary which converges to Ω0 smoothly away from the corners, and in a precise way at the vertices to be described in the paper. Fedosov [6], Kac [8] and McKean–Singer [13] recognised that certain heat trace coefficients, in particular the coefficient of t0, are not continuous as ε ↘ 0. We describe this anomaly using renormalized heat invariants of an auxiliary smooth domain Z which models the corner formation. The result applies to both Dirichlet and Neumann boundary conditions. We also include a discussion of what one might expect in higher dimensions.
Let ${\mathcal I}$ be an arbitrary ideal in ${\mathbb C}$[[x, y]]. We use the Newton algorithm to compute by induction the motivic zeta function of the ideal, yielding only few poles, associated to the faces of the successive Newton polygons. We associate a minimal Newton tree to ${\mathcal I}$, related to using good coordinates in the Newton algorithm, and show that it has a conceptual geometric interpretation in terms of the log canonical model of ${\mathcal I}$. We also compute the log canonical threshold from a Newton polygon and strengthen Corti's inequalities.
Consider a network linking the points of a rate-1 Poisson point process on the plane. Write Ψave(s) for the minimum possible mean length per unit area of such a network, subject to the constraint that the route-length between every pair of points is at most s times the Euclidean distance. We give upper and lower bounds on the function Ψave(s), and on the analogous “worst-case” function Ψworst(s) where the point configuration is arbitrary subject to average density one per unit area. Our bounds are numerically crude, but raise the question of whether there is an exponent α such that each function has Ψ(s) ≍ (s − 1)−α as s ↓ 1.
Tian initiated the study of incomplete Kähler–Einstein metrics on quasi–projective varieties with cone-edge type singularities along a divisor, described by the cone-angle 2π(1-α) for α∈ (0, 1). In this paper we study how the existence of such Kähler–Einstein metrics depends on α. We show that in the negative scalar curvature case, if such Kähler–Einstein metrics exist for all small cone-angles then they exist for every α∈((n+1)/(n+2), 1), where n is the dimension. We also give a characterisation of the pairs that admit negatively curved cone-edge Kähler–Einstein metrics with cone angle close to 2π. Again if these metrics exist for all cone-angles close to 2π, then they exist in a uniform interval of angles depending on the dimension only. Finally, we show how in the positive scalar curvature case the existence of such uniform bounds is obstructed.
Let $\mathcal{P}$ be a partition of a finite set X. We say that a transformation f : X → X preserves (or stabilises) the partition $\mathcal{P}$ if for all P ∈ $\mathcal{P}$ there exists Q ∈ $\mathcal{P}$ such that Pf ⊆ Q. Let T(X, $\mathcal{P}$) denote the semigroup of all full transformations of X that preserve the partition $\mathcal{P}$.
In 2005 Pei Huisheng found an upper bound for the minimum size of the generating sets of T(X, $\mathcal{P}$), when $\mathcal{P}$ is a partition in which all of its parts have the same size. In addition, Pei Huisheng conjectured that his bound was exact. In 2009 the first and last authors used representation theory to solve Pei Huisheng's conjecture.
The aim of this paper is to solve the more complex problem of finding the minimum size of the generating sets of T(X, $\mathcal{P}$), when $\mathcal{P}$ is an arbitrary partition. Again we use representation theory to find the minimum number of elements needed to generate the wreath product of finitely many symmetric groups, and then use this result to solve the problem.
The paper ends with a number of problems for experts in group and semigroup theories.
Using class field theory we prove an explicit result of André–Oort type for $\mathbb{P}^1(\mathbb{C}) \times \mathbb{G}_m(\mathbb{C})$. In this variation the special points of $\mathbb{P}^1(\mathbb{C})$ are the singular moduli, while the special points of $\mathbb{G}_m(\mathbb{C})$ are defined to be the roots of unity.
Let X be a normal projective variety defined over an algebraically closed field and let Z be a subvariety. Let D be an ${\mathbb R}$-Cartier ${\mathbb R}$-divisor on X. Given an expression (*) D$\sim_{\mathbb R}$t1H1 +. . .+ tsHs with ti ∈ ${\mathbb R}$ and Hi very ample, we define the (*)-restricted volume of D to Z and we show that it coincides with the usual restricted volume when Z$\not\subseteq$B+(D). Then, using some recent results of Birkar [Bir], we generalise to ${\mathbb R}$-divisors the two main results of [BCL]: The first, proved for smooth complex projective varieties by Ein, Lazarsfeld, Mustaţă, Nakamaye and Popa, is the characterisation of B+(D) as the union of subvarieties on which the (*)-restricted volume vanishes; the second is that X − B+(D) is the largest open subset on which the Kodaira map defined by large and divisible (*)-multiples of D is an isomorphism.
Let K be a function field over an algebraically closed field k of characteristic 0, let ϕ ∈ K(z) be a rational function of degree at least equal to 2 for which there is no point at which ϕ is totally ramified and let α ∈ K. We show that for all but finitely many pairs (m, n) ∈ $\mathbb{Z}$⩾0 × $\mathbb{N}$ there exists a place $\mathfrak{p}$ of K such that the point α has preperiod m and minimum period n under the action of ϕ. This answers a conjecture made by Ingram–Silverman [13] and Faber–Granville [8]. We prove a similar result, under suitable modification, also when ϕ has points where it is totally ramified. We give several applications of our result, such as showing that for any tuple (c0, . . ., cd−2) ∈ kd−1 and for almost all pairs (mi, ni) ∈ $\mathbb{Z}$⩾0 × $\mathbb{N}$ for i = 0, . . ., d − 2, there exists a polynomial f ∈ k[z] of degree d in normal form such that for each i = 0, . . ., d − 2, the point ci has preperiod mi and minimum period ni under the action of f.
Families of steady states of the spherically symmetric Einstein–Vlasov system are constructed, which are parametrised by the central redshift. It is shown that as the central redshift tends to zero, the states in such a family are well approximated by a steady state of the Vlasov–Poisson system, i.e., a Newtonian limit is established where the speed of light is kept constant as it should be and the limiting behavior is analysed in terms of a parameter which is tied to the physical properties of the individual solutions. This result is then used to investigate the stability properties of the relativistic steady states with small redshift parameter in the spirit of recent work by the same authors, i.e., the second variation of the ADM mass about such a steady state is shown to be positive definite on a suitable class of states.
Let R be a standard graded algebra over a field k. We prove an Auslander–Buchsbaum formula for the absolute Castelnuovo–Mumford regularity, extending important cases of previous works of Chardin and Römer. For a bounded complex of finitely generated graded R-modules L, we prove the equality reg L = maxi ∈$_{\mathbb Z}$ {reg Hi(L) − i} given the condition depth Hi(L) ⩾ dim Hi+1(L) - 1 for all i < sup L. As applications, we recover previous bounds on regularity of Tor due to Caviglia, Eisenbud–Huneke–Ulrich, among others. We also obtain strengthened results on regularity bounds for Ext and for the quotient by a linear form of a module.
We study the scaling scenery of Gibbs measures for subshifts of finite type on self-conformal fractals and applications to Falconer's distance set problem and dimensions of projections. Our analysis includes hyperbolic Julia sets, limit sets of Schottky groups and graph-directed self-similar sets.