We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the group of isotopy classes of automorphisms of the 3-sphere that preserve a spatial graph or a handlebody-knot embedded in it. We prove that the group is finitely presented for an arbitrary spatial graph or a reducible handlebody-knot of genus two. We also prove that the groups for “most” irreducible genus two handlebody-knots are finite.
Let D > 1 be an integer, and let b = b(D) > 1 be its smallest divisor. We show that there are infinitely many number fields of degree D whose primitive elements all have relatively large height in terms of b, D and the discriminant of the number field. This provides a negative answer to a question of W. Ruppert from 1998 in the case when D is composite. Conditional on a very weak form of a folk conjecture about the distribution of number fields, we negatively answer Ruppert's question for all D > 3.
Let ${\mathcal A}$ be a line arrangement in the complex projective plane $\mathds{C}\mathds{P}^2$. We define and describe the inclusion map of the boundary manifold, the boundary of a closed regular neighbourhood of ${\mathcal A}$, in the exterior of the arrangement. We obtain two explicit descriptions of the map induced on the fundamental groups. These computations provide a new minimal presentation of the fundamental group of the complement.
The notion of an exponential contraction is only one among many possible rates of contraction of a nonautonomous system, while for an autonomous system all contractions are exponential. We consider the notion of an L1 contraction that includes exponential contractions as a very particular case and that is naturally adapted to the variation-of-parameters formula. Both for discrete and continuous time, we show that under very general assumptions the notion of an L1 contraction persists under sufficiently small linear and nonlinear perturbations, also maintaining the type of stability. As a natural development, we establish a version of the Grobman–Hartman theorem for nonlinear perturbations of an L1 contraction.
The hyperelliptic Torelli group is the subgroup of the mapping class group consisting of elements that act trivially on the homology of the surface and that also commute with some fixed hyperelliptic involution. Putman and the authors proved that this group is generated by Dehn twists about separating curves fixed by the hyperelliptic involution. In this paper, we introduce an algorithmic approach to factoring a wide class of elements of the hyperelliptic Torelli group into such Dehn twists, and apply our methods to several basic types of elements. As one consequence, we answer an old question of Dennis Johnson.
We study the Hausdorff dimensions of certain sets of non-normal numbers defined in terms of the exact rate of convergence of digits in their N-adic expansions. As an application of our results we analyse the rate of convergence of local dimensions of multinomial measures.
On a (pseudo-)Riemannian manifold (${\mathcal M}$, g), some fields of endomorphisms i.e. sections of End(T${\mathcal M}$) may be parallel for g. They form an associative algebra $\mathfrak e$, which is also the commutant of the holonomy group of g. As any associative algebra, $\mathfrak e$ is the sum of its radical and of a semi-simple algebra $\mathfrak s$. Here we study $\mathfrak s$: it may be of eight different types, including the generic type $\mathfrak s$ = ${\mathbb R}$ Id, and the Kähler and hyperkähler types $\mathfrak s$ ≃ ${\mathbb C}$ and $\mathfrak s$ ≃ ${\mathbb H}$. This is a result on real, semi-simple algebras with involution. For each type, the corresponding set of germs of metrics is non-empty; we parametrize it. We give the constraints imposed to the Ricci curvature by parallel endomorphism fields.
Ledrappier and Young introduced a relation between entropy, Lyapunov exponents and dimension for invariant measures of diffeomorphisms on compact manifolds. In this paper, we show that a self-affine measure on the plane satisfies the Ledrappier–Young formula if the corresponding iterated function system (IFS) satisfies the strong separation condition and the linear parts satisfy the dominated splitting condition. We give sufficient conditions, inspired by Ledrappier and by Falconer and Kempton, that the dimensions of such a self-affine measure is equal to the Lyapunov dimension. We show some applications, namely, we give another proof for Hueter–Lalley's theorem and we consider self-affine measures and sets generated by lower triangular matrices.
The well-known theorems of Khintchine and Jarník in metric Diophantine approximation provide a comprehensive description of the measure theoretic properties of real numbers approximable by rational numbers with a given error. Various generalisations of these fundamental results have been obtained for other settings, in particular, for curves and more generally manifolds. In this paper we develop the theory for planar curves by completing the theory in the case of parabola. This represents the first comprehensive study of its kind in the theory of Diophantine approximation on manifolds.
We analyse the Gottlieb groups of function spaces. Our results lead to explicit decompositions of the Gottlieb groups of many function spaces map(X, Y)—including the (iterated) free loop space of Y—directly in terms of the Gottlieb groups of Y. More generally, we give explicit decompositions of the generalised Gottlieb groups of map(X, Y) directly in terms of generalised Gottlieb groups of Y. Particular cases of our results relate to the torus homotopy groups of Fox. We draw some consequences for the classification of T-spaces and G-spaces. For X, Y finite and Y simply connected, we give a formula for the ranks of the Gottlieb groups of map(X, Y) in terms of the Betti numbers of X and the ranks of the Gottlieb groups of Y. Under these hypotheses, the Gottlieb groups of map(X, Y) are finite groups in all but finitely many degrees.
Given any positive integer M, we show that there are infinitely many real quadratic fields that do not admit universal quadratic forms with even cross coefficients in M variables.
Using a suitable notion of principal G-bundle, defined relative to an arbitrary cartesian category, it is shown that principal bundles can be characterised as adjunctions that stably satisfy Frobenius reciprocity. The result extends from internal groups to internal groupoids. Since geometric morphisms can be described as certain adjunctions that are stably Frobenius, as an application it is proved that all geometric morphisms, from a localic topos to a bounded topos, can be characterised as principal bundles.
For every complex polynomial p(z), closed point sets are defined, called loci of p(z). A closed set Ω ⊆ ${\mathbb C}$* is a locus of p(z) if it contains a zero of any of its apolar polynomials and is the smallest such set with respect to inclusion. Using the notion locus, some classical theorems in the geometry of polynomials can be refined. We show that each locus is a Lebesgue measurable set and investigate its intriguing connections with the higher-order polar derivatives of p.
By proving precisely which singularity index lists arise from the pair of invariant foliations for a pseudo-Anosov surface homeomorphism, Masur and Smillie [MS93] determined a Teichmüller flow invariant stratification of the space of quadratic differentials. In this paper we determine an analog to the theorem for Out(F3). That is, we determine which index lists permitted by the [GJLL98] index sum inequality are achieved by ageometric fully irreducible outer automorphisms of the rank-3 free group.
The ring A = $\mathbb{F}$r[T] and its fraction field k, where r is a power of a prime p, are considered as analogues of the integers and rational numbers respectively. Let K/k be a finite extension and let φ be a Drinfeld A-module over K of rank d and Γ ⊂ K be a finitely generated free A-submodule of K, the A-module structure coming from the action of φ. We consider the problem of determining the number of primes ℘ of K for which the reduction of Γ modulo ℘ is equal to $\mathbb{F}$℘ (the residue field of the prime ℘). We can show that there is a natural density of primes ℘ for which Γ mod ℘ is equal to $\mathbb{F}$℘. In certain cases, this density can be seen to be positive.
We refine Cohen and Lustig's description of centralisers of Dehn twists of free groups. We show that the centraliser of a Dehn twist of a free group has a subgroup of finite index that has a finite classifying space. We describe an algorithm to find a presentation of the centraliser. We use this algorithm to give an explicit presentation for the centraliser of a Nielsen automorphism in Aut(Fn). This gives restrictions to actions of Aut(Fn) on CAT(0) spaces.
Given a set Γ of low-degree k-dimensional varieties in $\mathbb{R}$n, we prove that for any D ⩾ 1, there is a non-zero polynomial P of degree at most D so that each component of $\mathbb{R}$n\Z(P) intersects O(Dk−n|Γ|) varieties of Γ.
Let HX be the trigraded Hilbert function of a set X of reduced points in $\mathbb{P}$1 × $\mathbb{P}$1 × $\mathbb{P}$1. We show how to extract some geometric information about X from HX. This paper generalises a similar result of Giuffrida, Maggioni and Ragusa about sets of points in $\mathbb{P}$1 × $\mathbb{P}$1.
Revisiting and extending a recent result of M. Huxley, we estimate the Lp($\mathbb{T}$d) and Weak–Lp($\mathbb{T}$d) norms of the discrepancy between the volume and the number of integer points in translated domains.