Published online by Cambridge University Press: 19 June 2015
The hyperelliptic Torelli group is the subgroup of the mapping class group consisting of elements that act trivially on the homology of the surface and that also commute with some fixed hyperelliptic involution. Putman and the authors proved that this group is generated by Dehn twists about separating curves fixed by the hyperelliptic involution. In this paper, we introduce an algorithmic approach to factoring a wide class of elements of the hyperelliptic Torelli group into such Dehn twists, and apply our methods to several basic types of elements. As one consequence, we answer an old question of Dennis Johnson.
Supported in part by EPSRC grant EP/J019593/1. Supported by the Sloan Foundation and the NSF Grant No. DMS - 1057874.