To a non-singular algebraic surface in space of five dimensions there can generally (the Veronese surface, of order 4, and cones are exceptional) be drawn, from an arbitrary point, a finite number of chords. If such a surface be projected from a point into space of four dimensions, there will, therefore, in general, be a certain number of points upon the resulting surface, at which two sheets of this surface, with distinct tangent planes, have an isolated common point. Such points have been called improper double points. We consider an algebraic surface ψ, in space of four dimensions [4], with no other multiple points than such double points, which we shall call accidental double points. The chords of the surface ψ, drawn from an arbitrary point O of the space [4], form a surface, or conical sheet, of which a general generator meets the surface in two points. The locus of these points is a curve which we shall call the chord curve. This curve has an actual double point at each of the accidental double points of ψ There will also, generally, be a certain number of points of the surface which are points of contact of tangent planes of the surface passing through O (and therefore also points of contact of tangent lines through O, these tangent lines being generally tangent lines of the chord curve).