The 2-valued calculus of non-contradiction of Dexter has been extended to 3-valued logic. The methods used were, however, too complicated to be capable of generalisation to m-valued logics. The object of the present paper is to give an alternative method of generalising Dexter's work to m-valued logics with one designated truth-value. The rule of procedure is generalised in the same way as before, but the deductive completeness of the system is proved by applying results of Rosser and Turquette. The system has an infinite set of primitive functions, written n(P1, P2, …, Pr) (r = 1,2, …). With the notation of Post, n(P1, P2, …, Pr) has the same truth-value as ~(P1 & P2 & … & Pr). Thus n(P) is Post's primitive ~P, and we can define & by
We use n2(P1, P2, …, Pr) as an abbreviation for n(n(P1, P2, …, Pr)); similarly for higher powers of n. But if we set up the 1-1 correspondence of truth-values i ↔ m−i+1, then & corresponds to ∨ and ~m−1 corresponds to ~. Hence the functional completeness of our system follows from a theorem of Post.
We define the functions N(P), N(P, Q) by
Thus the truth-value of N(P) is undesignated if and only if the truth-value of P is designated, and the truth-value of N(P, Q) is undesignated if and only if the truth-values of P and Q are both designated.