This paper reports the results of an experimental investigation to determine transition mechanisms and limits in gases at high pressure levels. We sought also to refine further the parameters for transition, in particular the role of kinematic viscosity. In flow adjacent to a vertical uniform-flux surface in nitrogen, pressures to 16 atm were used. Both mean and disturbance quantities for the temperature and velocity fields were measured for various values of the heat flux, downstream location and ambient pressure level. Hot-wire and fine thermocouple probes were used. We found that the velocity and thermal fields remain closely coupled. Velocity, or fluid-dynamic, transition is immediately followed by thermal transition. Each was detected as a decrease in the rate of increase of both the maximum velocity and the overall temperature difference, respectively, from the laminar downstream trends. Also, the ends of transition for the velocity and the thermal fields, respectively, signalled by no further appreciable change in the intermittency distributions, were simultaneous. These results re-affirm the finding that the events of transition are not correlated by the Grashof number alone. An additional dependence on both downstream location and pressure level arises. A fixed value of the parameter $Q_{BT} = qB^{\frac{2}{15}}= 290$ characterizes the beginning of transition, where q is the fifth root of the local non-dimensional wall heat flux and B is the unit Grashof number. The end of transition, on the other hand, is best correlated by $Q_{ET} = QB^{\frac{1}{30}} = 11.4$, where Q is the fifth root of the local non-dimensional total heat convected in the boundary region. A re-examination of other transition studies, in both gases and liquids, supports these correlations, although many such data were not determined with fast response to local sensors. There remains a small level of uncertainty in establishing exact limits for transition, since the apparently proper standards for determining them are very difficult to apply precisely in experiments. However, such limits are very important in separating regimes of different transport mechanisms.