Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T16:46:04.139Z Has data issue: false hasContentIssue false

Some effects of surface tension on steep water waves

Published online by Cambridge University Press:  19 April 2006

S. J. Hogan
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge

Abstract

Surface tension provides a restoring force which cannot reasonably be ignored for water waves of short crest-to-crest length. Even for large wavelengths its presence precludes any sharp corner developing on the free surface. In this paper we begin an investigation of the effects of surface tension on steep water waves. The work of Longuet-Higgins (1975) is generalized to show how the integral properties of the wave train are affected. In particular it is shown that for pure capillary waves in deep water the mean fluxes of energy, mass and momentum are given by 3Tc, 2T/c and 4TV respectively, where c is the phase velocity, T the kinetic energy and V the potential energy.

Also the exact solution for the wave profile of deep-water pure capillary waves (Crapper 1957) is used to obtain wave profiles, all with the same mean level. This yields the unexpected result that the height of the wave crest above the mean level is not a monotonic function of wave steepness.

With subsequent papers this work will form one limiting case of the general problem of deep-water gravity—capillary waves.

Type
Research Article
Copyright
© 1979 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barakat, R. & Houston, A. 1968 J. Geophys. Res. 73, 65456555.
Beckert, H. 1963 Arch. Rat. Mech. Anal. 13, 1545.
Cokelet, E. D. 1977 Phil. Trans. Roy. Soc. A 286, 183230.
Crapper, G. D. 1957 J. Fluid Mech. 2, 532540.
Harrison, W. J. 1909 Proc. Lond. Math. Soc. (2), 7, 107121.
Kamesvara Rav, J. C. 1920 Proc. Ind. Ass. Cultiv. Sci. 6, 175193.
Kinnersley, W. 1976 J. Fluid Mech. 77, 229241.
Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.
Lekoudis, S. G., Nayfeh, A. H. & Saric, W. S. 1977 Phys. Fluids 20, 17931795.
Levi-Civita, T. 1925 Math. Ann. 93, 264314.
Lighthill, M. J. 1965 J. Inst. Math. Appl. 1, 269306.
Longuet-Higgins, M. S. 1975 Proc. Roy. Soc. A 342, 157174.
Longuet-Higgins, M. S. 1977 NATO Symp. Turbulent Fluxes, Wave Dyn. Prediction, Ile de Bandor.
McGoldrick, L. F. 1970 J. Fluid Mech. 42, 193200.
Nayfeh, A. H. 1970a J. Fluid Mech. 40, 671684.
Nayfeh, A. H. 1970b Phys. Fluids 13, 545550.
Nayfeh, A. H. 1971 J. Fluid Mech. 48, 385395.
Nayfeh, A. H. 1973 J. Fluid Mech. 59, 803816.
Pierson, W. J. & Fife, P. 1961 J. Geophys. Res. 66, 163179.
Sekerzh-Zenchovich, Y. I. 1956 Dokl. Akad. Nauk SSSR 109, 913915.
Slezkin, N. A. 1935 C.R. Acad. Sci. Paris 201, 707709.
Stokes, G. G. 1847 Trans. Camb. Phil. Soc. 8, 441455.
Wilton, J. R. 1915 Phil. Mag. (6), 29, 688700.