A reciprocating oscillatory turbulent flow in a rectangular duct is investigated experimentally by making use of a laser-Doppler velocimeter, hot-wire anemometers as well as electronic digital sampling and processing equipments.
The profiles of the mean velocity, the turbulence intensities, the Reynolds stress and the turbulent-energy production rate are compared for the accelerating and decelerating phases.
The characteristics of such a flow are quite different from wall turbulence which is steady in the mean. In the accelerating phase, turbulence is triggered by the shear instability at a slight distance from the wall but is suppressed and cannot develop. However, with the beginning of flow deceleration, turbulence grows explosively and violently and is maintained by the bursting type of motion.
The turbulent-energy production becomes exceedingly high in the decelerating phase, but the turbulence is reduced to a very low level at the end of the decelerating phase and in the accelerating stage of reversal flow. Spectra and spatial correlations for the various phases are compared. The spectral decay in the high-frequency range for the decelerating phase with high turbulence is far steeper than that of Kolmogorov's −5/3 power law, indicating remarkably high energy dissipation by high-frequency turbulence.
Notwithstanding the great difference between the ensemble-averaged characteristics of the oscillatory flow and those of steady wall turbulence, its basic processes such as ejection, sweep and interactions directed towards and away from the wall are the same as those of ‘steady’ wall turbulence.