Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T19:34:52.207Z Has data issue: false hasContentIssue false

Osculating Varieties of Veronese Varieties and Their Higher Secant Varieties

Published online by Cambridge University Press:  20 November 2018

A. Bernardi
Affiliation:
Dipartimento di Matematica di Bologna, Porta San Donato 5, 40126, Bologna, Italia email: [email protected]
M. V. Catalisano
Affiliation:
DIPTEM, Università di Genova, Genova, Italia email: [email protected]
A. Gimigliano
Affiliation:
Dipartimento di Matematica and C.I.R.A.M., Università di Bologna, Bologna, Italia email: [email protected]
M. Idà
Affiliation:
Dipartimento di Matematica, Università di Bologna, Bologna, Italia email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider the $k$-osculating varieties ${{O}_{k,\,n.d}}$ to the (Veronese) $d$-uple embeddings of ${{\mathbb{P}}^{n}}$. We study the dimension of their higher secant varieties via inverse systems (apolarity). By associating certain 0-dimensional schemes $Y\,\subset \,{{\mathbb{P}}^{n}}$ to $O_{k,n,d}^{s}$ and by studying their Hilbert functions, we are able, in several cases, to determine whether those secant varieties are defective or not.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2007

References

[A] Ådlandsvik, B., Varieties with an extremal number of degenerate higher secant varieties. J. Reine Angew. Math. 392(1988), 1626.Google Scholar
[AH] Alexander, J. and Hirschowitz, A., Polynomial interpolation in several variables. J. Algebraic Geom. 4(1995), no. 2, 201222.Google Scholar
[B] Ballico, E., On the secant varieties to the tangent developable of a Veronese variety. J. Algebra 288(2005), no. 2, 279286.Google Scholar
[BF] Ballico, E. and Fontanari, C., On the secant varieties to the osculating variety of a Veronese surface. Cent. Eur. J. Math. 1(2003), no. 3, 315326.Google Scholar
[BF2] Ballico, E. and Fontanari, C., A Terracini lemma for osculating spaces with applications to Veronese surfaces. J. Pure Appl. Algebra 195(2005), no. 1, 16.Google Scholar
[Be] Bernardi, A., Varieties Parameterizing Forms and Their Secant Varieties. Tesi di Dottorato, Universit á di Milano.Google Scholar
[BC] Bernardi, A. and Catalisano, M. V., Some defective secant varieties to osculating varieties of Veronese surfaces. Collect. Math. 57(2006), no. 1, 4368.Google Scholar
[CGG] Catalisano, M. V., Geramita, A. V., and Gimigliano, A.. On the secant varieties to the tangential varieties of a Veronesean. Proc. Amer. Math. Soc. 130(2002), 975985.Google Scholar
[CCMO] Ciliberto, C., Cioffi, F., Miranda, R., and Orecchia, F., Bivariate Hermite interpolation and linear systems of plane curves with base fat points. In: Computer Mathematics, Lecture Notes Series on Computing 10, World Scientific Publ., River Edge, NJ, 2003, pp. 87102.Google Scholar
[Ge] Geramita, A. V., Inverse Systems of Fat Points. Queen's Papers in Pure Appl. Math. 102(1998), 3104.Google Scholar
[Ha] Harbourne, B., Problems and progress: A survey on fat points i. 2. Queen's Papers in Pure Appl. Math. 123(2002), 87132.Google Scholar
[Hi] Hirschowitz, A., La méthode de Horace pour l’interpolation à plusieurs variables. Manuscripta Math. 50(1985), 337388.Google Scholar
[I] Iarrobino, A., Inverse systems of a symbolic power. III. Thin algebras and fat points. Compositio Math. 108(1997), no. 3, 319356.Google Scholar
[IK] Iarrobino, A. and Kanev, V., Power Sums, Gorenstein Algebras, and Determinantal Loci. Lecture Notes in Mathematics 1721, Springer-Verlag, Berlin, 1999.Google Scholar
[Se] Segre, B., Un’estensione delle varietà di Veronese ed un principio di dualità per le forme algebriche. I and II. ti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat.(8) 1(1946), 313318; 559–563.Google Scholar
[Te] Terracini, A., Sulle Vk per cui la varietà degli Sh (h + 1)-seganti ha dimensione minore dell’ordinario. Rend. Circ. Mat. Palermo 31(1911), 392396.Google Scholar
[W] Wakeford, K., On canonical forms. Proc. London Math. Soc. (2) 18(1919/20), 403410.Google Scholar