No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
We assume throughout this paper that A is a semi-simple, quasi-central, complex Banach algebra with a bounded approximate identity {eα}. The author [6] has shown that every central double centralizer T on A can be, under suitable conditions, represented as a bounded continuous complex-valued function ΦT on Prim A, the structure space of A with the hull-kernel topology, such that
Here x + P for P ∊ Prim A denotes the canonical image of x in A/P. This map Φ is called Dixmier's representation of Z(M(A)), the central double centralizer algebra of A. We denote by τ the canonical isomorphism of A into the Banach algebra D(A) with the restricted Arens product as defined in [6]. Also denote by μ Davenport's representation of Z(M(A)). In fact, this map μ is given by
for each T ∊ Z(M(A)).