Varroa destructor Anderson and Trueman females were placed in contact with queen, worker, and drone brood cells of Apis mellifera L. that were soon to be sealed. In a non-choice test, V. destructor adult females were introduced into a comb containing either queen or worker brood cells; 0.62 and 18.28% of the mites entered the queen and worker brood cells, respectively. Only 1 of the 11 mites that entered queen brood cells oviposited, laying a single egg. In another test, brood cells were combined in the same comb in a 1:25:3 queen:worker:drone ratio. The percentages of egg-laying mites in queen, worker, and drone brood cells were 16.66, 61.86, and 79.06%, respectively. When queen, worker, and drone brood cells were combined in equal proportions (33.3:33.3:33.3), percent infestation was significantly different among queen (3.25%), worker (49.12%), and drone (90.07%) brood. Multiple infestation was found in drone brood cells but not in others. Also, mites were inoculated into sealed queen cells. These cells contained either one or two mites (either at the egg or protonymph stage). Conversely, in a simultaneous test with worker brood cells, the offspring per foundress mite included a mean of three individuals (either at the egg, protonymph, or deutonymph stage). It is concluded that V. destructor can infest queen, worker, and drone brood cells, but drone brood cells are preferred; in addition, queen brood cells do not provide an optimal environment for reproduction because it causes a delay in mite oviposition and (or) progeny development.