Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T22:47:13.009Z Has data issue: false hasContentIssue false

Natural history and behavior of Chymomyza mycopelates and C. exophthalma (Diptera: Drosophilidae), and allometry of structures used as signals, weapons, and spore collectors

Published online by Cambridge University Press:  31 May 2012

William G. Eberhard*
Affiliation:
Smithsonian Tropical Research Institute and Escuela de Biología, Universidad de Costa Rica, Ciudad Universitaria, Costa Rica
*

Abstract

Males of Chymomyza mycopelates Grimaldi and Chymomyza exophthalma Grimaldi battled at sites where females fed and mated (but did not oviposit). Both sexes in the two species waved their brightly marked front legs during aggressive interactions, and males used these legs to strike and grasp opponents forcefully. During intense battles, male C. mycopelates also butted or pushed with their heads, whereas male C. exophthalma used their more strikingly wide heads to threaten with stereotyped displays, during which they also held their front legs folded against the sides of their eyes. Courtship behavior by male C. mycopelates involved tactile and perhaps visual displays with the tips of their front legs. Both species also fed by sweeping their front legs over the surface of fruiting fungi and by removing the spores from their legs with their mouthparts. Although male head width in C. exophthalma showed positive allometry, portions of the front legs that were used as signals and as weapons did not, and thus were not in accord with theoretical predictions that weapons and display devices would have steeper allometries.

Résumé

Les mâles de Chymomyza mycopelates Grimaldi et Chymomyza exophthalma Grimaldi se battent aux sites où les femelles se nourrissent et s'accouplent (mais où elles ne pondent pas). Les mâles et les femelles des deux espèces brandissent leurs pattes antérieures aux colorations brillantes au cours des interactions agressives et les mâles utilisent leurs pattes pour attaquer et saisir leurs rivaux. Au cours de batailles serrées, les mâles de C. mycopelates donnent des coups de tête ou poussent avec leur tête, alors que les mâles de C. exophthala utilisent leur tête, beaucoup plus large, et adoptent des attitudes menaçantes stéréotypées en tenant aussi leurs pattes repliées de chaque côté des yeux. Le comportement de cour du mâle de C. mycopelates compte des gestes tactiles, et peut-être aussi visuels, du bout des pattes antérieures. Les insectes des deux sexes utilisent également leurs pattes antérieures pour se nourrir en balayant la surface des fructifications de champignons dont ils prélèvent les spores avec leurs pièces buccales. Bien que la largeur de la tête du mâle de C. exophthalma reflète une allométrie positive, ce n'est pas le cas des pattes antérieures utilisées comme signaux ou comme armes, en contradiction avec les prévisions théoriques selon lesquelles les armes et les organes de parade devraient avoir une allométrie plus marquée.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alatalo, R., Hoglund, J., Lundberg, A. 1988. Patterns of variation in tail ornament size in birds. Biological Journal of the Linnean Society 34: 363–74Google Scholar
Andersson, M. 1994. Sexual selection. Princeton, New Jersey: Princeton University PressGoogle Scholar
Baker, R.H., Wilkinson, G.S. 2001. Phylogenetic analysis of sexual dimorphism and eye-span allometry in stalk-eyed flies (Diopsidae). Evolution 55: 1373–85Google Scholar
Briceño, R.D., Eberhard, W.G. 1995. The functional significance of male cercus morphology in 13 species of tropical earwigs (Dermaptera: Forficulidae, Labiidae, Carcinophoridae, Pygidicranidae). Smithsonian Contributions to Zoology 555: 163Google Scholar
Broadhead, E.C. 1984. Adaptations for fungal grazing in lauxaniid flies. Journal of Natural History 18: 639–49Google Scholar
Burkhardt, D., de la Motte, I. 1983. How stalk-eyed flies eye stalk-eyed flies: observations and measurements of the eyes of Cyrtodiopsis whitei (Diopsidae, Diptera). Journal of Comparative Physiology 151: 407–22Google Scholar
Burkhardt, D., de la Motte, I. 1985. Physiological, behavioural, and morphological data elucidate the evolutive significance of stalked eyes in Diopsidae (Diptera). Entomologia Generalis 12: 221–33Google Scholar
Burkhardt, D., de la Motte, I. 1988. Big “antlers” are favoured: female choice in stalk-eyed flies (Diptera, Insecta), field collected harems and laboratory experiments. Journal of Comparative Physiology A Sensory Neural and Behavioral Physiology 162: 649–52Google Scholar
Burkhardt, D., de la Motte, I., Lunau, K. 1994. Signaling fitness: larger males sire more offspring. Studies of the stalk-eyed fly Cyrtodiopsis whitei (Diopsidae, Diptera). Journal of Comparative Physiology A Sensory Neural and Behavioral Physiology 174: 61–4Google Scholar
Burla, H. 1990. Lek behavior in hypercephalic Zygothrica dispar Wiedemann (Diptera, Drosophilidae. Zeitschrift fuer Zoologische Systematik und Evolutionsforschung 28: 6977Google Scholar
Carpenter, J.B. 1954. Moldy rot of the Hevea rubber tree in Costa Rica. Plant Disease Report 38: 334–7Google Scholar
Chapman, R.F. 1998. The insects structure and function. 4th edition. Cambridge, Massachusetts: Cambridge University PressGoogle Scholar
Dodson, G.N. 2000. Behavior of the Phytalmiinae and the evolution of antlers in tephritid flies. pp 175–84 in Aluja, M., Norrbom, A. (Eds), Fruit flies (Tephritidae): phylogeny and evolution of behavior. Boca Raton, Florida: CRC PressGoogle Scholar
Eberhard, W.G. 1977. The fighting behavior of male Golofa porteri beetles (Scarabeidae: Dynastinae). Psyche (Cambridge) 84: 292–8Google Scholar
Eberhard, W.G. 1998 a. Reproductive behavior of Glyphidops flavifrons and Nerius plurivitatus (Diptera, Neriidae). Journal of the Kansas Entomological Society 71: 89107Google Scholar
Eberhard, W.G. 1998 b. Sexual behavior of Achanthocephala declivis guatemalana (Hemiptera: Coreidae) and the allometric scaling of their modified hind legs. Annals of the Entomological Society of America 91: 863–71Google Scholar
Eberhard, W.G. 2001. The functional morphology of species-specific clasping structures on the front legs of male Archisepsis and Palaeosepsis flies (Diptera: Sepsidae). Zoological Journal of the Linnean Society 133: 335–68Google Scholar
Eberhard, W.G., Gutierrez, E. 1991. Dimorphism among males of horned beetles and earwigs, and the question of developmental constraints. Evolution 45: 1828Google Scholar
Eberhard, W.G., Huber, B.A., Rodriguez, R.L., Briceño, R.D., Salas, I., Rodriguez, V. 1998. One size fits all? Relationships between the size and degree of variation in genitalia and other body parts in twenty species of insects and spiders. Evolution 52: 415–31.Google Scholar
Eberhard, W.G., Huber, B.A., Rodriguez, R.L. 1999. Don't forget the biology: a reply to Green. Evolution 53: 1624–7Google Scholar
Eberhard, W.G., Garcia-C, M., Lobo, J. 2000. Size-specific defensive structures in a weevil confirm a classic battle plan: avoid fights with larger opponents. Proceedings of the Royal Society of London B Biological Sciences 267: 1129–34Google Scholar
Green, A.J. 1992. Positive allometry is likely with mate choice, competitive display and other functions. Animal Behavior 43: 170–2Google Scholar
Green, A.J. 1999. Allometry of genitalia in insects and spiders: one size does not fit all. Evolution 53: 1621–4Google Scholar
Grimaldi, D. 1986. The Chymomyza aldrichii species-group (Diptera: Drosophilidae): relationships, new neotropical species, and the evolution of some sexual traits. Journal of the New York Entomological Society 94: 342–71Google Scholar
Grimaldi, D. 1987. Amber fossil Drosophilidae (Diptera), with particular reference to the Hispaniolan taxa. American Museum Novitates 2880: 123Google Scholar
Grimaldi, D. 1999. Monograph on the spittlebug flies, genus Cladochaeta (Diptera: Drosophilidae): Cladochaetini). Bulletin of the American Museum of Natural History 241: 1326Google Scholar
Grimaldi, D., Fenster, G. 1989. Evolution of extreme sexual dimorphisms: structural and behavioral convergence among broad-headed male Drosophilidae (Diptera). American Museum Novitates 2939: 125Google Scholar
Huxley, J. 1972. Problems of relative growth. 2nd edition. New York: DoverGoogle Scholar
Klingenberg, C.P., Zimmermann, M. 1992. Static, ontogenetic and evolutionary allometry: a multivariate comparison in nine species of water striders. American Naturalist 140: 601–20Google Scholar
McAlpine, D.K. 1975. Combat between males of Pogonortalis doclea (Diptera, Platystomatidae) and its relation to structural modification. Australian Entomological Magazine 2: 104–7Google Scholar
McAlpine, D.K. 1979. Agonistic behavior in Achias australis (Diptera, Platystomatidae) and the significance of eyestalks. pp. 221–30 in Blum, M., Blum, N. (Eds), Sexual selection and reproductive competition in insects. New York: Academic PressGoogle Scholar
Nicholson, S.W. 1994. Pollen feeding in the eucalypt nectar fly, Drosophila flavohirta. Physiological Entomology 19: 5860Google Scholar
Okada, T. 1981. The genus Chymomyza Czerny (Diptera, Drosophilidae) from New Guinea, Bismark Archipelago, and Southeast Asia, with an ecological note. Kontyu 49: 166–77Google Scholar
Otte, D., Stayman, K. 1979. Beetle horns: some patterns in functional morphology. pp 259–92 in Blum, M., Blum, N. (Eds), Sexual selection and reproductive competition in insects. New York: Academic PressGoogle Scholar
Petrie, M. 1988. Intraspecific variation in structures that display competitive ability: large animals invest relatively more. Animal Behaviour 36: 1174–9Google Scholar
Petrie, M. 1992. Are all secondary sexual display structures positively allometric and, if so, why? Animal Behaviour 43: 173–5Google Scholar
Pomiankowski, A., Møller, A.P. 1995. A resolution of the lek paradox. Proceedings of the Royal Society of London B Biological Sciences 260: 21–9Google Scholar
Spieth, H.T. 1952. Mating behavior within the genus Drosophila (Diptera). Bulletin of the American Museum of Natural History 99: 399474Google Scholar
Spieth, H.T. 1981. Drosophila heteroneura and Drosophila silvestris: head shapes, behavior and evolution. Evolution 35: 921–30Google Scholar
Templeton, A.R. 1977. Analysis of head shape differences between two interfertile species of Hawaiian Drosophila. Evolution 31: 630–41Google Scholar
Templeton, A.R. 1979. Once again, why 300 species of Hawaiian Drosophila. Evolution 33: 513–7Google Scholar
Wilkinson, G.S., Dodson, G.N. 1997. Function and evolution of antlers and eye stalks in flies. pp 310–28 in Choe, J.C., Crespi, B.J. (Eds), The evolution of mating systems in insects and arachnids. Cambridge, Massachusetts: Cambridge University PressGoogle Scholar