We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Liu [‘Supercongruences for truncated Appell series’, Colloq. Math.158(2) (2019), 255–263] and Lin and Liu [‘Congruences for the truncated Appell series $F_3$ and $F_4$’, Integral Transforms Spec. Funct.31(1) (2020), 10–17] confirmed four supercongruences for truncated Appell series. Motivated by their work, we give a new supercongruence for the truncated Appell series $F_{1}$, together with two generalisations of this supercongruence, by establishing its q-analogues.
We study the problem of determining the holomorphic self maps of the unit disc that induce a bounded composition operator on Dirichlet-type spaces. We find a class of symbols $\varphi $ that induce a bounded composition operator on the Dirichlet-type spaces, by applying results of the multidimensional theory of composition operators for the weighted Bergman spaces of the bi-disc.