Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T22:50:17.813Z Has data issue: false hasContentIssue false

The study of blindness and technology can reveal the mechanisms of three-dimensional navigation

Published online by Cambridge University Press:  08 October 2013

Achille Pasqualotto
Affiliation:
Biological and Experimental Psychology Group, School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom. [email protected]
Michael J. Proulx
Affiliation:
Department of Psychology, University of Bath, Bath BA2 7AY, United Kingdom. [email protected]://people.bath.ac.uk/mjp51/

Abstract

Jeffery et al. suggest that three-dimensional environments are not represented according to their volumetric properties, but in a quasi-planar fashion. Here we take into consideration the role of visual experience and the use of technology for spatial learning to better understand the nature of the preference of horizontal over vertical spatial representation.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buhot, M.-C., Dubayle, C., Malleret, G., Javerzat, S. & Segu, L. (2001) Exploration, anxiety, and spatial memory in transgenic anophthalmic mice. Behavioral Neuroscience 115:445–67.Google Scholar
Butler, D. L., Acquino, A. L., Hissong, A. A. & Scott, P. A. (1993) Wayfinding by newcomers in a complex building. Journal of the Human Factors and Ergonomics Society 35:159–73.Google Scholar
Chebat, D. R., Chen, J. K., Schneider, F., Ptito, A., Kupers, R. & Ptito, M. (2007) Alterations in right posterior hippocampus in early blind individuals. NeuroReport 18:329–33.Google Scholar
Deutschländer, A., Stephan, T., Hüfner, K., Wagner, J., Wiesmann, M., Strupp, M., Brandt, T. & Jahn, K. (2009) Imagined locomotion in the blind: An fMRI study. NeuroImage 45:122–28.CrossRefGoogle ScholarPubMed
Frankenstein, J., Mohler, B. J., Bülthoff, H. H. & Meilinger, T. (2012) Is the map in our head oriented north? Psychological Science 23:120–25.CrossRefGoogle ScholarPubMed
Hill, A. J. & Best, P. J. (1981) Effects of deafness and blindness on the spatial correlates of hippocampal unit activity in the rat. Experimental Neurology 74:204–17.CrossRefGoogle ScholarPubMed
Hölscher, C., Meilinger, T., Vrachliotis, G., Brösamle, M. & Knauff, M. (2006) Up the down staircase: Wayfinding strategies and multi-level buildings. Journal of Environmental Psychology 26(4):284–99.CrossRefGoogle Scholar
Hyvärinen, J., Hyvärinen, L. & Linnankoski, I. (1981) Modification of parietal association cortex and functional blindness after binocular deprivation in young monkeys. Experimental Brain Research 42:18.CrossRefGoogle ScholarPubMed
Kupers, R., Chebat, D. R., Madsen, K. H., Paulson, O. B. & Ptito, M. (2010) Neural correlates of virtual route recognition in congenital blindness. Proceedings of the National Academy of Sciences USA 107:12716–21.Google Scholar
Lahav, O. & Mioduser, D. (2008) Haptic-feedback support for cognitive mapping of unknown spaces by people who are blind. International Journal of Human-Computer Studies 66:2335.CrossRefGoogle Scholar
Larsen, D. D., Luu, J. D., Burns, M. E. & Krubitzer, L. (2009) What are the effects of severe visual impairment on the cortical organization and connectivity of primary visual cortex? Frontiers in Neuroanatomy 3:30.Google Scholar
Leporé, N., Shi, Y., Lepore, F., Fortin, M., Voss, P., Chou, Y. Y. Lord, C., Lassonde, M., Dinov, I. D., Toga, A. W. & Thompson, P. M. (2009) Patterns of hippocampal shape and volume differences in blind subjects. NeuroImage 46:949.CrossRefGoogle ScholarPubMed
Ooi, T. L., Wu, B. & He, Z. J. (2001) Distance determined by the angular declination below the horizon. Nature 414:197–99.Google Scholar
Pasqualotto, A. & Proulx, M. J. (2012) The role of visual experience for the neural basis of spatial cognition. Neuroscience and Biobehavioral Reviews 36:1179–87.CrossRefGoogle ScholarPubMed
Pasqualotto, A., Spiller, M. J., Jansari, A. S. & Proulx, M. J. (2013) Visual experience is necessary for the representation of spatial patterns. Behavioural Brain Research 236:175–79.Google Scholar
Passini, R. & Proulx, G. (1988) Wayfinding without vision: An experiment with congenitally totally blind people. Environment and Behavior 20:227–52.CrossRefGoogle Scholar
Paz-Villagrán, V., Lenck-Santini, P.-P., Save, E. & Poucet, B. (2002) Properties of place cell firing after damage to the visual cortex. European Journal of Neuroscience 16:771–76.CrossRefGoogle Scholar
Péruch, P., Vercher, J. L. & Gauthier, G. M. (1995) Acquisition of spatial knowledge through visual exploration of simulated environments. Ecological Psychology 7:120.CrossRefGoogle Scholar
Postma, A., Zuidhoek, S., Noordzij, M. L. & Kappers, A. M. L. (2007) Differences between early-blind, late-blind, and blindfolded-sighted people in haptic spatial configuration learning and resulting memory traces. Perception 36:1253–65.Google Scholar
Poucet, B., Save, E. & Lenck-Santini, P.-P. (2000) Sensory and memory properties of place cells firing. Reviews in the Neurosciences 11:95111.Google Scholar
Proulx, M. J., Brown, D. J., Pasqualotto, A.. Neuroscience and Biobehavioral Reviews. [http://dx.doi.org/10.1016/j.neubiorev.2012.11.017].Google Scholar
Proulx, M. J., Brown, D. J., Pasqualotto, A. & Meijer, P. (2012) Multisensory perceptual learning and sensory substitution. Neuroscience and Biobehavioral Reviews. 2012 Dec 7. pii: S0149-7634(12)00207-2.Google Scholar
Proulx, M. J., Stoerig, P., Ludowig, E. & Knoll, I. (2008) Seeing “where” through the ears: Effects of learning-by-doing and long-term sensory deprivation on localization based on image-to-sound substitution. PLoS ONE 3:e1840.Google Scholar
Röder, B., Kusmierek, A., Spence, C. & Schicke, T. (2007) Developmental vision determines the reference frame for the multisensory control of action. Proceedings of the National Academy of Sciences USA 104:4753–58.Google Scholar
Sinai, M. J., Ooi, T. L. & He, Z. J. (1998) Terrain influences the accurate judgement of distance. Nature 395:497500.Google Scholar
Thibault, G., Pasqualotto, A., Vidal, M., Droulez, J. & Berthoz, A. (2013) How does horizontal and vertical navigation influence spatial memory of multi-floored environments? Attention, Perception, and Psychophysics 75(1):1015. doi: 10.3758/s13414-012-0405-x$$$.CrossRefGoogle Scholar
Vecchi, T., Tinti, C. & Cornoldi, C. (2004) Spatial memory and integration processes in congenital blindness. NeuroReport 15:2787–90.Google Scholar
Vidal, M., Amorim, M. A. & Berthoz, A. (2004) Navigating in a virtual three-dimensional maze: How do egocentric and allocentric reference frames interact? Brain Research. Cognitive Brain Research 19(3):244–58.Google Scholar
Vidal, M., Lipshits, M., McIntyre, J. & Berthoz, A. (2003) Gravity and spatial orientation in virtual 3D-mazes. Journal of Vestibular Research 13:273–86.Google Scholar