Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T18:12:41.115Z Has data issue: false hasContentIssue false

Quantum mathematical cognition requires quantum brain biology: The “Orch OR” theory

Published online by Cambridge University Press:  14 May 2013

Stuart R. Hameroff*
Affiliation:
Departments of Anesthesiology and Psychology, The University of Arizona, University of Arizona Medical Center, Tucson, AZ 85724. [email protected]

Abstract

The “Orch OR” theory suggests that quantum computations in brain neuronal dendritic-somatic microtubules regulate axonal firings to control conscious behavior. Within microtubule subunit proteins, collective dipoles in arrays of contiguous amino acid electron clouds enable “quantum channels” suitable for topological dipole “qubits” able to physically represent cognitive values, for example, those portrayed by Pothos & Busemeyer (P&B) as projections in abstract Hilbert space.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Collins, G. P. (2006) Computing with quantum knots. Scientific American 294(4):5663.Google Scholar
Craddock, T. J. A., St George, M., Freedman, H., Barakat, K. H., Damaraju, S., Hameroff, S. & Tuszynski, J. A. (2012a) Computational predictions of volatile anesthetic interactions with the microtubule cytoskeleton: Implications for side effects of general anesthesia. PLoS ONE 7(6):e37251.CrossRefGoogle ScholarPubMed
Craddock, T. J. A., Tuszynski, J. A. & Hameroff, S. (2012b) Cytoskeletal signaling: Is memory encoded in microtubule lattices by CaMKII phosphorylation? PLoS Computational Biology 8(3):e1002421.Google Scholar
Engel, G. S., Calhoun, T. R., Read, E. L., Ahn, T. K., Mancal, T., Cheng, Y. C., Blankenship, R. E. & Fleming, G. R. (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature (London) 446(7137):782–86.CrossRefGoogle ScholarPubMed
Freedman, M. H., Kitaev, A., Larsen, M. J. & Wang, Z. (2002) Topological quantum computation. Bulletin of the American Mathematical Society 40:3138.Google Scholar
Gauger, E. M., Rieper, E., Morton, J. J. L., Benjamin, S. C. & Vedral, V. (2011) Sustained quantum coherence and entanglement in the avian compass. Physical Review Letters 106:040503.CrossRefGoogle ScholarPubMed
Hagan, S., Hameroff, S. & Tuszynski, J. (2002) Quantum computation in brain microtubules? Decoherence and biological feasibility. Physical Review E 65:061901.Google Scholar
Hameroff, S. (1998) Quantum computation in brain microtubules? The Penrose–Hameroff “Orch OR” model of consciousness. Philosophical Transactions of the Royal Society of London Series A 356:1869–96.Google Scholar
Hameroff, S. (2006a) Consciousness, neurobiology and quantum mechanics: The case for a connection, In: The Emerging Physics of Consciousness, ed. Tuszynski, J., pp. 193252, Springer.CrossRefGoogle Scholar
Hameroff, S. (2006b) The entwined mysteries of anesthesia and consciousness. Anesthesiology 105:400–12.Google Scholar
Hameroff, S. (2010) The “conscious pilot” – dendritic synchrony moves through the brain to mediate consciousness. Journal of Biological Physics 36:7193.CrossRefGoogle Scholar
Hameroff, S. (2012) How quantum brain biology can rescue conscious free will. Frontiers in Integrative Neuroscience 6(93):117. DOI: 10.3389/fnint.2012.00093.Google Scholar
Hameroff, S., Nip, A., Porter, M. & Tuszynski, J. (2002) Conduction pathways in microtubules, biological quantum computation and microtubules. Biosystems 64(13):149–68.Google Scholar
Hameroff, S. R. (2007) The brain is both neurocomputer and quantum computer. Cognitive Science 31:1035–45.CrossRefGoogle ScholarPubMed
Hameroff, S. R. & Penrose, R. (1996a) Conscious events as orchestrated spacetime selections. Journal of Consciousness Studies 3(1):3653.Google Scholar
Hameroff, S. R. & Penrose, R. (1996b) Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness. Mathematics and Computers in Simulation 40:453–80.CrossRefGoogle Scholar
Kitaev, A. Y. (2003) Fault-tolerant quantum computation. Annals of Physics 303(1):230; quant-ph/9707021.CrossRefGoogle Scholar
McKemmish, L. K., Reimers, J. R., McKenzie, R. H., Mark, A. E. & Hush, N. S. (2009) Penrose-Hameroff orchestrated objective-reduction proposal for human consciousness is not biologically feasible. Physical Review E. 80:021912.CrossRefGoogle Scholar
Penrose, R. (1989) The emperor's new mind. Oxford University Press.Google Scholar
Penrose, R. (1994) Shadows of the mind: a search for the missing science of consciousness. Oxford University Press.Google Scholar
Penrose, R. (1996) On gravity's role in quantum state reduction. General Relativity Gravity 28:581600.CrossRefGoogle Scholar
Penrose, R. (2004) The road to reality: A complete guide to the laws of the universe. Jonathan Cape.Google Scholar
Penrose, R. & Hameroff, S. (2011) Consciousness in the universe: Neuroscience, quantum space-time geometry and Orch OR theory. Journal of Cosmology 14:117. Available at: http://journalofcosmology.com/Consciousness160.html.Google Scholar
Penrose, R. & Hameroff, S. R. (1995) What gaps? Reply to Grush and Churchland. Journal of Consciousness Studies 2:98112.Google Scholar
Sarovar, M., Ishizaki, A., Fleming, G. R. & Whaley, B. K. (2010) Quantum entanglement in photosynthetic light-harvesting complexes. Nature Physics 6(6):462–67.Google Scholar
Scholes, G. S. (2010) Quantum-coherent electronic energy transfer: Did nature think of it first? Journal of Physics and Chemistry Letters 1:28.Google Scholar
Tegmark, M. (2000) The importance of quantum decoherence in brain processes. Physical Review E 61:4194–206.Google Scholar