Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T03:25:18.231Z Has data issue: false hasContentIssue false

Modification of spectral features by nonhuman primates

Published online by Cambridge University Press:  17 December 2014

Daniel J. Weiss
Affiliation:
Department of Psychology and Program in Linguistics, Pennsylvania State University, University Park, PA 16802. [email protected]://weisslab.weebly.com/
Cara F. Hotchkin
Affiliation:
Naval Facilities Engineering Command, Atlantic, Norfolk, VA 23508. [email protected]
Susan E. Parks
Affiliation:
Department of Biology, Syracuse University, Syracuse, NY 13244. [email protected]://parkslab.syr.edu/

Abstract

Ackermann et al. discuss the lack of evidence for vocal control in nonhuman primates. We suggest that nonhuman primates may be capable of achieving greater vocal control than previously supposed. In support of this assertion, we discuss new evidence that nonhuman primates are capable of modifying spectral features in their vocalizations.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brumm, H., Voss, K., Köllmer, I. & Todt, D. (2004) Acoustic communication in noise: Regulation of call characteristics in a New World monkey. Journal of Experimental Biology 207(3):443–48.Google Scholar
Cleveland, J. & Snowdon, C. T. (1982) The complex vocal repertoire of the adult cotton-top tamarin (Saguinus oedipus oedipus). Zeitschrift für Tierpsychologie 58(3):231–70.Google Scholar
Egan, J. P. & Hake, H. W. (1950) On the masking pattern of a simple auditory stimulus. Journal of the Acoustical Society of America 22:622–30.Google Scholar
Egnor, S. E. R. & Hauser, M. D. (2006) Noise-induced vocal modulation in cotton-top tamarins (Saguinus oedipus). American Journal of Primatology 68(12):1183–90.Google Scholar
Egnor, S. E. R., Iguina, C. G. & Hauser, M. D. (2006) Perturbation of auditory feedback causes systematic perturbation in vocal structure in adult cotton-top tamarins. Journal of Experimental Biology 209(18):3652–63.Google Scholar
Egnor, S. E. R., Wickelgren, J. G. & Hauser, M. D. (2007) Tracking silence: Adjusting vocal production to avoid acoustic interference. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 193(4):477–83.Google Scholar
Eliades, S. J. & Wang, X. (2012) Neural correlates of the Lombard effect in primate auditory cortex. The Journal of Neuroscience 32(31):10737–48.Google Scholar
Garnier, M., Henrich, N. & Dubois, D. (2010) Influence of sound immersion and communicative interaction on the Lombard effect. Journal of Speech, Language, and Hearing Research 53:588608.Google Scholar
Hage, S. R., Jiang, T., Berquist, S. W., Feng, J. & Metzner, W. (2013) Ambient noise induces independent shifts in call frequency and amplitude within the Lombard effect in echolocating bats. Proceedings of the National Academy of Sciences USA 110(10):4063–68.Google Scholar
Hotchkin, C. F. (2012) Vocal noise compensation in nonhuman mammals: Modification types and usage patterns. Ph.D. thesis, Department of Ecology, The Pennsylvania State University.Google Scholar
Hotchkin, C. F. & Parks, S. (2013) The Lombard effect and other noise-induced vocal modifications: Insight from mammalian communication systems. Biological Reviews 88(4):809–24.Google Scholar
Hotchkin, C. F., Parks, S. E. & Weiss, D. J. (2013) Vocal modifications in primates: Effects of noise and behavioral context on vocalization structure. In: Proceedings of Meetings on Acoustics, Vol. 19, No. 1, Article 010061. Acoustical Society of America.Google Scholar
Janik, V. & Slater, P. J. B. (1997) Vocal learning in mammals. In: Advances in the Study of Behavior, vol. 26, ed. Slater, P. J. B., Rosenblatt, J. S., Snowdon, C. T., & Milinski, M., pp. 5999. Academic Press.Google Scholar
Lombard, E. (1911) Le signe de l'elevation de la voix [The sign of the elevation of the voice]. Annales des Maladies de l'Oreille et du Larynx 37:101–19.Google Scholar
Lu, Y. & Cooke, M. (2009) The contribution of changes in F0 and spectral tilt to increased intelligibility of speech produced in noise. Speech Communication 51(12):1253–62.Google Scholar
Nachtigall, P., Supin, A. Y., Pawloski, J. & Au, W. W. L. (2004) Temporary threshold shifts after noise exposure in the bottlenose dolphin (Tursiops truncatus) measured using evoked auditory potentials. Marine Mammal Science 20:673–87.Google Scholar
Owren, M. J., Amoss, R. T. & Rendall, D. (2011) Two organizing principles of vocal production: Implications for nonhuman and human primates. American Journal of Primatology 73(6):530–44.Google Scholar
Parks, S. E., Johnson, M., Nowacek, D. P. & Tyack, P. L. (2011) Individual right whales call louder in increased environmental noise. Biology Letters 7:3335.CrossRefGoogle ScholarPubMed
Pick, H. L. Jr., Siegel, G. M., Fox, P. W., Garber, S. R. & Kearney, J. K. (1989) Inhibiting the Lombard effect. Journal of the Acoustical Society of America 85:94.Google Scholar
Sinnott, J. M., Stebbins, W. C. & Moody, D. B. (1975) Regulation of voice amplitude by the monkey. Journal of the Acoustical Society of America 58:412–14.Google Scholar
Weiss, D. J. & Hauser, M. D. (2002) Perception of harmonics in the combination long call of cotton-top tamarins (Saguinus oedipus). Animal Behaviour 64:415–26.Google Scholar
Weiss, D. J., Garibaldi, B. T. & Hauser, M. D. (2001) The production and perception of long calls by cotton-top tamarins (Saguinus oedipus): Acoustic analyses and playback experiments. Journal of Comparative Psychology 15(3):258–71.Google Scholar