We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Increasing plant species diversity has been proposed as a means for enhancing annual pasture productivity and decreasing seasonal variability of pasture production facing more frequent drought scenarios due to climate change. Few studies have examined how botanical complexity of sown swards affects cow performance. A 2-year experiment was conducted to determine how sward botanical complexity, from a monoculture of ryegrass to multi-species swards (MSS) (grasses-legumes-forb), affect pasture chemical composition and nutritive value, pasture dry matter (DM) intake, milk production and milk solids production of grazing dairy cows. Five sward species: perennial ryegrass (L as Lolium), white clover and red clover (both referred to as T as Trifolium because they were always sown together), chicory (C as Cichorium) and tall fescue (F as Festuca) were assigned to four grazing treatments by combining one (L), three (LT), four (LTC) or five (LTCF) species. Hereafter, the LT swards are called mixed swards as a single combination of ryegrass and clovers, whereas LTC and LTCF swards are called MSS as a combination of at least four species from three botanical families. The experimental area (8.7 ha) was divided into four block replicates with a mineral nitrogen fertilisation of 75 kg N/ha per year for each treatment. In total, 13 grazing rotations were carried out by applying the same grazing calendar and the same pasture allowance of 19 kg DM/cow per day above 4 cm for all treatments. Clover represented 20% of DM for mixed and MSS swards; chicory represented 30% of DM for MSS and tall fescue represented 10% of DM for LTCF swards. Higher milk production (+1.1 kg/day) and milk solids production (+0.08 kg/day) were observed for mixed swards than for ryegrass swards. Pasture nutritive value and pasture DM intake were unaffected by the inclusion of clover. Pasture DM, organic matter and NDF concentrations were lower for MSS than for mixed swards. Higher milk production (+0.8 kg/day), milk solids production (+0.04 kg/day) and pasture DM intake (+1.5 kg DM/day) were observed for MSS than for mixed swards. These positive effects of MSS were observed for all seasons, but particularly during summer where chicory proportion was the highest. In conclusion, advantages of grazing MSS on cow performance were due to the cumulative effect of improved pasture nutritive value and increased pasture DM intake that raised milk production and milk solids production.
Delayed feed and water access is known to impair growth performance of day old broiler chickens. Although effects of feed access on growth performance and immune function of broilers have been examined before, effects of dietary composition and its potential interaction with feed access are hardly investigated. This experiment aimed to determine whether moment of first feed and water access after hatch and pre-starter composition (0 to 7 days) affect growth rate and humoral immune function in broiler chickens. Direct fed chickens received feed and water directly after placement in the grow-out facility, whilst delayed fed chickens only after 48 h. Direct and delayed fed chickens received a control pre-starter diet, or a diet containing medium chain fatty acids (MCFA) or fish oil. At 21 days, chickens were immunized by injection of sheep red blood cells. The mortality rate depended on an interaction between feed access and pre-starter composition (P=0.014). Chickens with direct feed access fed the control pre-starter diet had a higher risk for mortality than chickens with delayed feed access fed the control pre-starter diet (16.4% v. 4.2%) whereas the other treatment groups were in-between. BW gain and feed intake till 25 days in direct fed chickens were higher compared with delayed fed chickens, whilst gain to feed ratio was lower. Within the direct fed chickens, the control pre-starter diet resulted in the highest BW at 28 days and the MCFA pre-starter diet the lowest (Δ=2.4%), whereas this was opposite for delayed fed chickens (Δ=3.0%; P=0.033). Provision of MCFA resulted in a 4.6% higher BW gain and a higher gain to feed ratio compared with other pre-starter diets, but only during the period it was provided (2 to 7 days). Minor treatment effects were found for humoral immune response by measuring immunoglobulins, agglutination titers, interferon gamma (IFN-γ), and complement activity. Concluding, current inclusion levels of fish oil (5 g/kg) and MCFA (30 g/kg) in the pre-starter diet appear to have limited (carryover) effects on growth and development, as well as on humoral immune function.
In order to avoid excess feed consumption during the force-feeding period in foie gras production, a dose-response experiment with seven feed consumption levels (450, 540, 630, 720, 810, 900, 990 g/day per bird) was conducted to evaluate the effects of feed consumption levels on growth performance and carcass composition of male Mule ducks from 91 to 102 days of age. One-day-old Mule ducklings (sterile and artificial hybrid of male Albatre Muscovy duck and female Pekin duck were fed a two-phase commercial diets for ad libitum intake from hatching to 91 days of age, followed by graded feeding levels of a corn diet by force-feeding from 91 to 102 days of age. Fifty-six 91-day-old male Mule ducks with similar BW were randomly assigned to seven treatments, with eight birds per treatment. Birds were housed in individual pens. At 102 days of age, final BW was measured and BW gain and feed conversion ratio of ducks from each treatment were calculated from day 91 to 102, and then all ducks were slaughtered to evaluate the yields of skin with subcutaneous fat, abdominal fat, breast meat (including pectoralis major and pectoralis minor), leg meat (including thigh and drum stick), and liver. Significant differences in BW gain, total liver weight and liver relative weight were observed among the treatments (P<0.001). According to the broken-line regression analysis, the optimal feed consumption levels of male Mule ducks from 91 to 102 days of age for maximum BW gain, total liver weight and liver relative weight were 217, 227 and 216 g feed/kg BW0.75·per day, respectively.
The objective of the present study was to determine the inhibitory effect of dietary rosemary diterpenes on the formation of the volatile organic compounds (VOCs) responsible for rancid flavour in raw lamb meat. The lamb diet was supplemented during the fattening stage with two levels (200 and 400 mg/kg feed) of a dietary rosemary extract (DRE) containing carnosic acid and carnosol (1 : 1, w/w). The formation of VOCs (determined by headspace solid-phase microextraction at 40°C and MS) and odour deterioration (assessed by quantitative descriptive analysis) were monitored in meat fillets (longissimus dorsi-lumborum muscle) packed in a 70/30 O2/CO2 protective atmosphere and kept at 2°C for up to 14 days. The raw meat odour deteriorated under pro-oxidizing conditions due to the development of an incipient rancidity caused by the formation of volatiles from lipid oxidation. A total of 46 volatile compounds were determined in lamb headspace: 18 aldehydes, seven alcohols, seven organic acids, six ketones, four furan compounds, two benzene compounds, one ester and one terpenoid. The use of DRE contributed to inhibit VOC formation and rancidity. Heptanal, octanal, nonanal and 2-pentyl-furan were the only VOCs affected (P<0.05) by the diet at any storage time. In general, VOC formation rate during storage was lower (P<0.05) in the meat from lambs that received a diet supplemented with 400 mg DRE/kg feed than in the meat from lambs receiving no dietary supplementation. VOC inhibition was less effective when the dose of DRE was reduced to 200 mg/DRE kg, although it depended on the VOC analysed. The intensity of rancid odour correlated (P<0.05) with the values of 43 of the 46 VOCs. The highest coefficients were obtained for octanol and octanal (R>0.75; P<0.001), although similar values were obtained for the coefficients of a large number of carbonyl, alcohols and furan compounds, among other volatiles, which can be considered molecular markers of rancidity in raw lamb meat. Principal component analysis confirmed that the differences in the VOC profile make it possible to identify whether or not samples have been reinforced with dietary rosemary diterpenes. Thus, VOC profiling can be regarded as a useful tool for assessing the dietary treatments used in sheep to improve the oxidative stability of lamb meat.
Prenatal development is known to be extremely sensitive to maternal and environmental challenges. In this study, we hypothesize that body growth and lactation during gestation in cattle reduce nutrient availability for the pregnant uterus, with consequences for placental development. Fetal membranes of 16 growing heifers and 27 fully grown cows of the Belgian Blue (BB) breed were compared to determine the effect of body growth on placental development. Furthermore, the fetal membranes of 49 lactating Holstein Friesian (HF) cows and 27 HF heifers were compared to study the impact of dam lactation compared to dam body growth. After parturition, calf birth weight and body measurements of dam and calf were recorded, as well as weight of total fetal membranes, cotyledons and intercotyledonary membranes. All cotyledons were individually measured to calculate both the surface of each individual cotyledon and the total cotyledonary surface per placenta. Total cotyledonary surface was unaffected by breed or the breed×parity interaction. Besides a 0.3 kg lower cotyledonary weight (P=0.007), heifer placentas had a smaller total cotyledonary surface compared with placentas of cows (0.48±0.017 v. 0.54±0.014 m2, respectively, P<0.001). Within the BB breed, fetal membranes of heifers had a 1.5 kg lower total weight and 1.0 kg lower intercotyledonary membrane weight (P<0.005) compared with cows. A cotyledon number of only 91±5.4 was found in multiparous BB dams, while growing BB heifers had a higher cotyledon number (126±6.7, P<0.001), but a greater proportion of smaller cotyledons (<40 cm2). Within the HF breed, no parity effect on intercotyledonary membrane weight, cotyledon number and individual cotyledonary surface was found. Placental efficiency (calf weight/total cotyledonary surface) was similar in HF and BB heifers but significantly higher in multiparous BB compared with multiparous HF dams (106.0±20.45 v. 74.3±12.27 kg/m2, respectively, P<0.001). Furthermore, a seasonal effect on placental development was found, with winter and spring placentas having smaller cotyledons than summer and fall placentas (P<0.001). Main findings of the present study are that lactation and maternal growth during gestation entail a comparable nutrient diverting constraint, which might alter placental development. However, results suggest that the placenta is able to manage this situation through two potential compensation mechanisms. In early pregnancy the placenta might cope by establishing a higher number of cotyledons, while in late gestation a compensatory expansion of the cotyledonary surface is suggested to meet the nutrient demand of the fetus.
Enterotoxigenic Escherichia coli (ETEC) is a type of pathogenic bacteria that cause diarrhea in piglets through colonizing pig small intestine epithelial cells by their surface fimbriae. Different fimbriae type of ETEC including F4, F18, K99 and F41 have been isolated from diarrheal pigs. In this study, we performed a genome-wide association study to map the loci associated with the susceptibility of pigs to ETEC F41 using 39454 single nucleotide polymorphisms (SNPs) in 667 F2 pigs from a White Duroc×Erhualian F2 cross. The most significant SNP (ALGA0022658, P=5.59×10−13) located at 6.95 Mb on chromosome 4. ALGA0022658 was in high linkage disequilibrium (r2>0.5) with surrounding SNPs that span a 1.21 Mb interval. Within this 1.21 Mb region, we investigated ZFAT as a positional candidate gene. We re-sequenced cDNA of ZFAT in four pigs with different susceptibility phenotypes, and identified seven coding variants. We genotyped these seven variants in 287 unrelated pigs from 15 diverse breeds that were measured with ETEC F41 susceptibility phenotype. Five variants showed nominal significant association (P<0.05) with ETEC F41 susceptibility phenotype in International commercial pigs. This study provided refined region associated with susceptibility of pigs to ETEC F41 than that reported previously. Further works are needed to uncover the underlying causal mutation(s).
In the post-antibiotics era, prebiotics are proposed as alternatives to antibiotic growth promoters in poultry production. The goal of this study was to compare in ovo method of prebiotic delivery with in-water supplementation and with both methods combined (in ovo+in-water) in broiler chickens. Two trials were conducted. Trial 1 was carried out to optimize the doses of two prebiotics, DN (DiNovo®, extract of beta-glucans) and BI (Bi2tos, trans-galactooligosaccharides), for in ovo delivery. The estimated parameters were hatchability and bacteriological status of the newly hatched chicks. Prebiotics were dissolved in 0.2 ml of physiological saline, at the doses: 0.18, 0.88, 3.5 and 7.0 mg/embryo; control group (C) was injected in ovo with 0.2 ml of physiological saline. Trial 2 was conducted to evaluate effects of different prebiotics (DN, BI and raffinose family oligosaccharides (RFO)) delivered in ovo, in-water and in a combined way (in ovo+in-water) on broiler chickens performance. The results of the Trial 1 indicated that the optimal dose of DN and BI prebiotics delivered in ovo, that did not reduce chicks’ hatchability, was 0.88 mg/embryo (DN) and 3.5 mg/embryo (BI). Both prebiotics numerically increased number of lactobacilli and bifidobacteria in chicken feces (P>0.05). In Trial 2, all prebiotics (DN, BI and RFO) significantly increased BW gain compared with the C group (P<0.05), especially during the first 21 days of life. However, feed intake and feed conversion ratio were increased upon prebiotics delivery irrespective of method used. Injection of prebiotics in ovo combined with in-water supplementation did not express synergistic effects on broilers performance compared with in ovo injection only. Taken together, those results confirm that single in ovo prebiotics injection into the chicken embryo can successfully replace prolonged in-water supplementation post hatching.
Residual feed intake (RFI), defined as the difference between an animal’s actual feed intake and expected feed intake over a specific period, is an inheritable character of feed conversion efficiency in dairy cows. Research has shown that a lower RFI could improve the profitability of milk production. This study explored variation in RFI by comparing the differences in body size, milk performance, feeding behavior, and serum metabolites in 29 Holstein cows in mid lactation. The cows were selected from a total of 84 animals based on their RFI following feedlot tests. Selected cows were ranked into high RFI (RFI >1 SD above the mean, n=14) and low RFI (RFI<1 SD below the mean, n=15). The low RFI cows (more efficient) consumed 1.59 kg/day less dry matter than the high RFI group (P<0.01), while they produced nearly equal 4% fat-corrected milk. The milk : feed ratio was higher for the low RFI group than for the high RFI group (P<0.05). The levels of milk protein (P<0.01), total solids (P<0.05), and nonfat solids (P<0.05) were also higher for the low RFI group, whereas milk urea nitrogen was lower (P<0.01). The daily feeding duration was shorter for the low RFI group than for the high RFI group (P<0.01). No significant differences were found in levels of glucose, β-hydroxybutyrate, prolactin, insulin, IGF-1, growth hormone or ghrelin, but the level of neuropeptide Y was higher (P<0.01) and levels of leptin and non-esterified fatty acid (P<0.05) were lower for the low RFI group than for the high RFI group. There were substantial differences between cows with different RFI, which might affect the efficiency of milk protein metabolism and fat mobilization.
Stress based on high temperature and humidity reduces the production performance of fast-growing broilers and causes high mortality. Temperatures higher than optimum have been applied to broilers in the embryonic period in order to overcome thermal stress. This study was conducted to investigate the effects of exposure to two long-term high-thermal environments on the developmental stability of embryonic growth, hatchability and chick quality. For this purpose, 600 broiler eggs were incubated. Treatments consisted of eggs incubated at 37.8°C at 55% relative humidity throughout (control), heated to 39.6°C at 60% relative humidity for 6 h daily from 0 to 8th day, and heated to 39.6°C at 60% relative humidity for 6 h daily from the 10 to 18th day. Embryo weights and lengths of face, wing, femur, tibia and metatarsus were measured daily between the 10th and 21st day of the experiment. Daily relative asymmetry values of bilateral traits were estimated. The hatchability, the weight of the 1-day-old chicks and chick quality were determined. In conclusion, no negative effects of the treatments of the long-term high-thermal environment in the early and late stages of incubation for epigenetic adaptation were determined on the embryo morphology, development stability and weight of the chick. Moreover, regressed hatchability of embryos that were exposed to a long-term high-thermal environment was detected. Especially between the 10 and 18th day, the thermal manipulation considerably reduced the quality of the chicks. Acclimation treatments of high temperature on the eggs from cross-breeding flocks should not be made long term; instead, short-term treatments should be made by determining the stage that generates epigenetic adaptation.
Use of cooled and frozen semen is becoming increasingly prevalent in the equine industry. However, these procedures cause harmful effects in the sperm cell resulting in reduced cell lifespan and fertility rates. Apoptosis and necrosis-related events are increased during semen cryopreservation. However, a third type of cell death, named autophagy, has not been studied during equine semen storage. Light chain (LC)3 protein is a key component of the autophagy pathway. Under autophagy activation, LC3-I is lipidated and converted to LC3-II. The ratio of LC3-II/LC3-I is widely used as a marker of autophagy activation. The main objective of this study was to investigate whether LC3 is processed during cooling, freezing and the stressful conditions associated with these technologies. A secondary objective was to determine if LC3 processing can be modulated and if that may improve the quality of cryopreserved semen. LC3 processing was studied by Western blot with a specific antibody that recognized both LC3-I and LC3-II. Viability was assessed by flow cytometry. Modulation of LC3-I to LC3-II was studied with known autophagy activators (STF-62247 and rapamycin) or inhibitors (chloroquine and 3-MA) used in somatic cells. The results showed that conversion of LC3-I to LC3-II increased significantly during cooling at 4°C, freezing/thawing and each of the stressful conditions tested (UV radiation, oxidative stress, osmotic stress and changes in temperature). STF-62247 and rapamycin increased the LC3-II/LC3-I ratio and decreased the viability of equine sperm, whereas chloroquine and 3-MA inhibited LC3 processing and maintained the percentage of viable cells after 2 h of incubation at 37°C. Finally, refrigeration at 4°C for 96 h and freezing at −196°C in the presence of chloroquine and 3-MA resulted in higher percentages of viable cells. In conclusion, results showed that an ‘autophagy-like’ mechanism may be involved in the regulation of sperm viability during equine semen cryopreservation. Modulation of autophagy during these reproductive technologies may result in an improvement of semen quality and therefore in higher fertility rates.
A total of 1922 first generation crossbred cows born between 2005 and 2012 produced by inseminating purebred Israeli Holstein cows with Norwegian Red semen, and 7487 purebred Israeli Holstein cows of the same age in the same 50 herds were analyzed for production, calving traits, fertility, calving diseases, body condition score, abortion rate and survival under intensive commercial management conditions. Holstein cows were higher than crossbreds for 305-day milk, fat and protein production. Differences were 764, 1244, 1231 for kg milk; 23.4, 37.4, 35.6 for kg fat, and 16.7, 29.8, 29.8 for kg protein; for parities 1 through 3. Differences for fat concentration were not significant; while crossbred cows were higher for protein concentration by 0.06% to 0.08%. Differences for somatic cells counts were not significant. Milk production persistency was higher for Holstein cows by 5, 8.3 and 8% in parities 1 through 3. Crossbred cows were higher for conception status by 3.1, 3.6 and 4.7% in parities 1 through 3. Rates of metritis for Holsteins were higher than the crossbred cows by 7.8, 4.6 and 3.4% in parities 1 to 3. Differences for incidence of abortion, dystocia, ketosis and milk fever were not significant. Holstein cows were lower than crossbred cows for body condition score for all three parities, with differences of 0.2 to 0.4 units. Contrary to comparisons in other countries, herd-life was higher for Holsteins by 79 days. A total of 6321 Holstein cows born between 2007 and 2011 were higher than 765 progeny of crossbred cows backcrossed to Israeli Holsteins of the same ages for milk, fat and protein production. Differences were 279, 537, 542 kg milk; 10.5, 17.7, 17.0 kg fat and 6.2, 12.9, 13.2 kg protein for parities 1 through 3. Differences for fat concentration were not significant, while backcross cows were higher for protein percentage by 0.02% to 0.04%. The differences for somatic cell score, conception rate, and calving diseases other than metritis, were not significant. Holstein cows were lower than backcross cows by 1.5% to 2.5% for conception status in parities 1 to 3 and lower for body condition score for parities 1 and 2, with differences in the range of 0.06 to 0.09 units. Culling rates were higher, and herd-life lower for the crossbred cows. The gains obtained in secondary traits for crossbred cows did not compensate for the major reduction in production.
Replacing dairy components from milk replacer (MR) with vegetable products has been previously associated with decreased protein and fat digestibility in milk-fed calves resulting in lower live weight gain. In this experiment, the major carbohydrate source in MR, lactose, was partly replaced with gelatinized corn starch (GCS) to determine the effect on protein and fat digestibility in milk-fed calves. In total, 16 male Holstein-Friesian calves received either MR with lactose as the carbohydrate source (control) or 18% GCS at the expense of lactose. In the adaptation period, calves were exposed to an increasing dose of GCS for 14 weeks. The indigestible marker cobalt ethylenediaminetetraacetic acid was incorporated into the MR for calculating apparent nutrient digestibility, whereas a pulse dose of chromium (Cr) chloride was fed with the last MR meal 4 h before slaughter as an indicator of passage rates. The calves were anesthetized and exsanguinated at 30 weeks of age. The small intestine was divided in three; small intestine 1 and 2 (SI1 and SI2, respectively) and the terminal ileum (last ~100 cm of small intestine) and samples of digesta were collected. Small intestinal digesta was analysed for α-amylase, lipase and trypsin activity. Digestibility of protein was determined for SI1, SI2, ileum and total tract, whereas digestibility of fat was determined for SI1, SI2 and total tract. Apparent protein digestibility in the small intestine did not differ between treatments but was higher in control calves at total tract level. Apparent crude fat digestibility tended to be increased in SI1 and SI2 for GCS calves, but no difference was found at total tract level. Activity of α-amylase in SI2 and lipase in both SI1 and SI2 was higher in GCS calves. Activity of trypsin tended to be higher in control calves and was higher in SI1 compared with SI2. A lower recovery of Cr in SI2 and a higher recovery of Cr in the large intestine suggest an increased rate of passage for GCS calves. Including 18% of GCS in a milk replacer at the expense of lactose increased passage rate and decreased apparent total tract protein digestibility. In the small intestine, protein digestion did not decrease when feeding GCS and fat digestion even tended to increase. Overall, effects on digestion might be levelled when partially replacing lactose with GCS, because starch digestion is lower than that of lactose but fat digestion may be slightly increased when feeding GCS.
Oilseeds offer some protection to the access of ruminal microorganisms and may be an alternative to calcium salts of fatty acids (FA), which are not fully inert in the ruminal environment. This study aimed to evaluate the effects of different sources of FA supplementation on apparent total tract nutrient digestibility, milk yield and composition, and energy balance (EB) of cows during the transition period and early lactation. We compared diets rich in C18:2 and C18:3 FA. Multiparous Holstein cows were randomly assigned to receive one of the four diets: control (n=11); whole flaxseed (WF, n=10), 60 and 80 g/kg (diet dry matter (DM) basis) of WF during the prepartum and postpartum periods, respectively; whole raw soybeans (WS, n=10), 120 and 160 g/kg (diet DM basis) of WS during the prepartum and postpartum periods, respectively; and calcium salts of unsaturated fatty acids (CSFA, n=11), 24 and 32 g/kg (diet DM basis) of CSFA during the prepartum and postpartum periods, respectively. Dry cows fed WF had higher DM and net energy of lactation (NEL) intake than those fed WS or CSFA. The FA supplementation did not alter DM and NDF apparent total tract digestibility, dry cows fed WF exhibited greater NDF total tract digestion than cows fed WS or CSFA. Feeding WS instead of CSFA did not alter NEL intake and total tract digestion of nutrients, but increased milk fat yield and concentration. Calculated efficiency of milk yield was not altered by diets. FA supplementation increased EB during the postpartum period. Experimental diets increased long-chain FA (saturated and unsaturated FA) in milk. In addition, cows fed WS and CSFA had higher C18:1 trans-11 FA and C18:2 cis, and lower C18:3 FA in milk than those fed WF. Furthermore, cows fed CSFA had higher C18:1 trans-11 and cis-9, trans-11 FA than cows fed WS. Although supplemental C18:2 and C18:3 FA did not influence the milk yield of cows, they positively affected EB and increased unsaturated long-chain FA in milk fat.
To investigate the effect of uterine space on timing of embryonic mortality, multiparous sows were left intact (CTR; n=42) or subjected to unilateral oviduct ligation (LIG; n=23), after their first post wean oestrus. Intact sows were killed at day 9 (n=10), day 21 (n=15), or day 35 (n=17), and LIG sows were killed at day 21 (n=11) or day 35 (n=12) of gestation. At day 9, 92% of ovulations were represented by an embryo. At day 21, embryonic mortality was 24% and was not altered by increasing uterine space. At day 35, space per embryo was twice as large in LIG sows (30±3 v. 16±0.8 cm), and implantation length tended to be larger (19.0±1.2 v. 15.5±1.3 cm). Between day 21 and day 35, CTR sows lost another 8% to 14% of their embryos, whereas LIG sows lost none. Embryos tended to be heavier (4.9±0.2 v. 4.3±0.3 g) in LIG sows. In conclusion, embryonic loss in multiparous sows is 24% by day 21 and is not related to space, whereas after day 21 limited space causes additional 8% to 14% embryonic mortality in intact sows only.
Milk losses associated with mastitis can be attributed to either effects of pathogens per se (i.e. direct losses) or to effects of the immune response triggered by the presence of mammary pathogens (i.e. indirect losses). Test-day milk somatic cell counts (SCC) and number of bacterial colony forming units (CFU) found in milk samples are putative measures of the level of immune response and of the bacterial load, respectively. Mediation models, in which one independent variable affects a second variable which, in turn, affects a third one, are conceivable models to estimate direct and indirect losses. Here, we evaluated the feasibility of a mediation model in which test-day SCC and milk were regressed toward bacterial CFU measured at three selected sampling dates, 1 week apart. We applied this method on cows free of clinical signs and with records on up to 3 test-days before and after the date of the first bacteriological samples. Most bacteriological cultures were negative (52.38%), others contained either staphylococci (23.08%), streptococci (9.16%), mixed bacteria (8.79%) or were contaminated (6.59%). Only losses mediated by an increase in SCC were significantly different from null. In cows with three consecutive bacteriological positive results, we estimated a decreased milk yield of 0.28 kg per day for each unit increase in log2-transformed CFU that elicited one unit increase in log2-transformed SCC. In cows with one or two bacteriological positive results, indirect milk loss was not significantly different from null although test-day milk decreased by 0.74 kg per day for each unit increase of log2-transformed SCC. These results highlight the importance of milk losses that are mediated by an increase in SCC during mammary infection and the feasibility of decomposing total milk loss into its direct and indirect components.
The objective of the present study was to investigate the effect of feeding two transgenic corn lines containing the mCry1Ac gene from Bacillus thuringiensis strain (BT-799) and the maroACC gene from Agrobacterium tumefaciens strain (CC-2), respectively, on growth, egg quality and organ health indicators. Expression of the mCry1Ac gene confers resistance to Pyrausta nubilalis and the maroACC gene confers tolerance to herbicides. Healthy hens (n=96 placed in cages; 3 hens/cage) were randomly assigned to one of four corn–soybean meal dietary treatments (8 cages/treatment) formulated with the following corn: non-transgenic near-isoline control corn (control), BT-799 corn, CC-2 corn and commercially available non-transgenic reference corn (reference). The experiment was divided into three 4-week phases (week 1 to 4, week 5 to 8 and week 9 to 12), during which hens were fed mash diets. Performance (BW, feed intake and egg production) and egg quality were determined. Following slaughter at the end of 12 weeks of feeding (n=8/treatment), carcass yield and organ weights (heart, liver, spleen, lung, kidneys, stomach and ovary) were recorded; organs and intestines were sampled for histological analysis. Analysis of serum biochemistry parameters to assess the liver and kidney function were performed. No differences in BW, egg production and production efficiency were observed between hens consuming the control diet and hens consuming the BT-799 or CC-2 diet. Haugh unit measures and egg component weights were similar between the control and test groups. Carcass yield was not affected by the diet treatment. Similar organosomatic indices and serum parameters did not indicate the characteristics of organ dysfunction. All observed values of the BT-799 and CC-2 groups were within the calculated tolerance intervals. This research indicates that the performance, egg quality, organ health and carcass yield of laying hens fed diets containing the BT-799 or CC-2 corn line were similar to that of laying hens fed diets formulated with the non-transgenic near-isoline corn with comparable genetic backgrounds.
The movement of sows (Sus scrofa domesticus) out of individual gestation stalls and into group housing can introduce new sources of stress due to the enhanced environmental and social complexity. Some sows may have the behavioral capacity to adapt to these changes better than others. However, little is known about individual differences in behavioral responses, or personality traits, in gestating sows and how they impact the animal’s ability to cope with group housing. The temporal consistency in the assessment of an animal’s behavior is a prerequisite to the establishment of personality traits and was addressed at an interval of approximately five months during two consecutive gestation periods in the present study. Forty-six group-housed sows from a commercially available genetic line were assessed for aggressive and social behaviors at mixing into a group, reaction to human approach, ease of handling, exploration of an open field, and reaction to a novel object. Principal component analysis revealed the presence of three traits accounting for over 60% of the variance in behaviors: aggressive/dominant, avoidant of humans and active/exploratory. Individual component scores were significantly correlated between pregnancies demonstrating temporal stability of trait assessment. Significant relationships were found between aggressive/dominant component scores and individual feed rank at electronic sow feeding stations and skin lesion scores, as well as between avoidant of humans component scores and average number of stillbirths per litter. These findings provide evidence for the temporal stability of distinct behaviors contributing to personality traits within a group of genetically similar sows and demonstrate how these traits may be useful in identifying individuals likely to succeed in group housing.
Before slaughter, lambs may experience several stressors such as feed and water deprivation, handling and transport that have the potential to negatively impact welfare and meat quality. The objective of this study was to evaluate the effect of pre-slaughter handling, exercise and the presence of a dog on the behaviour and physiology of lambs and meat quality at slaughter. At 6 months of age, 60 lambs (n=20 lambs/replicate; three replicates) were allocated to one of the two treatment groups (n=30 lambs/treatment): low (LOW) intensive handling or high (HIGH) intensive handling. LOW lambs were moved short distances, quietly and without the use of a dog before transport. HIGH lambs were moved quickly, long distances and with a dog present before transport. Lamb behaviour (standing, lying, rumination and panting) was recorded for 1 h before (post-treatment) and after transport (post-transport), and for 30 min before slaughter (pre-slaughter). Blood samples were collected before (baseline), after transport (post-transport) and at exsanguination (at slaughter) to assess cortisol, lactate and non-esterified fatty acid (NEFA) concentrations. At slaughter, lamb carcases (M. longissimus lumborum) were evaluated for pH levels, drip and cook loss, and tenderness. HIGH lambs spent more time standing (P<0.001) and panting (P<0.001) and less time lying (P<0.001) and ruminating (P<0.001) post-treatment than LOW lambs, but more (P<0.001) time ruminating post-transport. All lambs spent more time standing (P<0.001) and less time lying (P<0.001) and panting (P<0.001) post-transport and pre-slaughter than post-treatment. Cortisol concentrations were greater (P<0.001) in lambs post-transport and at slaughter compared with baseline values. Lactate concentrations were lower (P=0.002) in HIGH than LOW lambs. In addition, NEFA concentrations were higher (P<0.001) post-transport and at slaughter in HIGH compared with LOW lambs. Ultimate pH was higher (P<0.001) in HIGH than LOW lambs and pH declined quicker (P=0.012) in LOW than HIGH lambs. Cook loss, drip loss and shear force were lower (P⩽0.05) in HIGH than LOW lambs. The HIGH intensive pre-slaughter handling regime used in the present study caused stress in lambs and increased ultimate pH that could potentially negatively impact welfare, product quality and consistency.
We have previously demonstrated that a sharp rise in feed intake (hyperphagia) and spontaneous liver steatosis could be experimentally induced in domestic Greylag geese by combining a short photoperiod and a sequence of feed restriction followed by ad libitum corn feeding during the fall and the winter. In this previous work, however, individual feed intake could not be recorded. The present study aimed at evaluating the relationship between level and pattern of hyperphagia and liver weight with an individual control of feed intake in individually housed (IH) geese, while comparing the performances with group housed (GH) geese. A total of 300 male geese of 19 weeks of age, were provided with corn ad libitum after an initial feed restriction period. From 21 to 23 weeks of age, the daylight duration was progressively reduced from 10 to 7 h and kept as such until the end of the experiment (week 36). In all, 30 GH and 30 IH geese were slaughtered at 19, 27, 30, 32 and 36 weeks of age. Feed intake was measured per group in GH geese and individually in IH geese. During the 1st week of corn feeding, the average feed intake rose up to 600 g/goose per day in GH geese but not in IH geese where the feed intake rose gradually from 300 to 400 g/day. The liver weight increased from 93 g (week 19) to 497 g (week 32; P<0.05) in GH birds. In IH birds, liver weights were, on average, much lower (ranging from 220 to 268 g) than in GH birds (P<0.05). In GH and IH bird, the variability in the individual response to corn feeding was very high (liver weight cv ranging from 63% to 83% depending on slaughter age). A close correlation between corn consumption and liver weight was evidenced in IH birds at each slaughter age (R2 ranging from 0.62 to 0.79), except at 36 weeks of age where this correlation was weak (R2=0.14). The variability in the extent of liver steatosis is very high and our results in IH birds clearly point out the major role of hyperphagia, mainly at the beginning of the ad libitum corn feeding period, on the development of spontaneous liver steatosis.