Our systems are now restored following recent technical disruption, and we’re working hard to catch up on publishing. We apologise for the inconvenience caused. Find out more: https://www.cambridge.org/universitypress/about-us/news-and-blogs/cambridge-university-press-publishing-update-following-technical-disruption
We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To save this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Green biorefineries provide novel opportunities to use the green biomass efficiently and utilize the ecosystem services provided by grasslands more widely. The effects of the inclusion of fractionated grass silage solid fraction (pulp) on feed intake, rumen fermentation, diet digestion and milk production in dairy cows were investigated. Pulp was separated from grass silage using a screw press simulating a green biorefinery. Partial removal of liquid from forage increased DM concentration from 220 to 432 g/kg and NDF from 589 to 709 g/kg DM while CP decreased from 144 to 107 g/kg DM. A feeding trial using an incomplete changeover design with 24 Nordic Red cows and two 3-week periods was conducted. The pulp replaced grass silage in the diet at 0 (P0), 25 (P25) and 50 (P50) percentage of total forage, which was fed ad libitum with 13 kg of concentrate for all treatments. The forage DM intake was highest on P25 (14.1 kg/day) while P0 and P50 did not differ from each other (13.2 and 13.0 kg/day, respectively). There were no differences between the treatments in rumen pH or ammonia N, but the proportion of acetate increased with increasing pulp inclusion. The digestibility was measured using acid insoluble ash and indigestible NDF (iNDF) as internal markers. Neither of the markers detected differences in NDF digestibility, but according to iNDF, apparent total tract organic matter digestibility decreased with increasing pulp inclusion. The cows maintained milk production at P25, but it showed some decline at P50 (energy-corrected milk at P0 and P25 was 39.8 kg/day while for P50, it was 38.5 kg/day, P = 0.056) and the milk protein yield significantly declined with higher pulp inclusion. Simultaneously, the nitrogen use efficiency in milk production increased. It seems that the fibrous grass-based fraction from a biorefinery process has potential to be used as a feed for ruminants.
Triptorelin (TRI), a gonadotropin-releasing hormone agonist allowing ovulation synchronization in pigs, is indispensable for fixed-time artificial insemination (FTAI) protocols. However, the effect of FTAI using TRI (FTAI-TRI) on the reproductive performance is controversial. We performed a meta-analysis to determine whether FTAI-TRI affects reproductive performance of pigs, including pregnancy rate (PR), number of pigs born alive per litter (NBA), farrowing rate (FR) and total number of pigs born per litter (TNB). A total of 37 trials from 15 studies were extracted and analysed in Stata. A weighted mean difference (WMD) with 95% confidence interval (CI) was calculated for NBA and TNB, and risk ratio (RR) with 95% CI was calculated for PR and FR. Pregnancy rate, TNB and NBA data were applied to a fixed-effect protocol, and FR data were applied to a random-effect protocol. We found that for weaned sows, the FTAI-TRI group had comparable reproductive performance to the artificial insemination (AI) following oestrus detection (EDAI) group. Fixed-time AI has many advantages, including the elimination of the need to heat-check twice daily, so that FTAI-TRI is a good substitute for EDAI. Subgroup analysis indicated that the optimal timing of triptorelin treatment was 96 h after weaning, which gave significant positive effects on PR (RR = 1.08, P = 0.000) and non-significant positive effects on TNB (WMD = 0.12, P = 0.452). Triptorelin at a dose of 100 μg showed better effects than 200 μg, with significant positive effects on PR (RR = 1.09, P = 0.005) and FR (RR = 1.06, P = 0.036). So a single dose of 100 μg was recommended. The optimal protocol was insemination at 24 h and again at 48 h after triptorelin administration if they remained in standing oestrus, and this provided a significantly higher NBA (WMD = 0.59, P = 0.013) that increased by 0.59. For gilts, the FTAI-TRI group showed decreased (not significant) PR (RR = 0.96, P = 0.127) and significantly decreased FR (RR = 0.93, P = 0.013), TNB (WMD = −0.85, P = 0.006) and NBA (WMD = −0.98, P = 0.000), which were inferior to those in the EDAI group. In conclusion, the effects of FTAI-TRI on the reproductive performance of pigs were parity-, treatment timing-, insemination timing-, and dosage-dependent. Fixed-time AI using triptorelin could effectively replace the EDAI protocol for sows, but not for gilts.
Economic margins on pig farms are small, and changing slaughter weights may increase farm profitability. However, one can question if the optimal slaughter weight is the same for each sex. On three farms, crossbred pigs (n = 1128) were used to determine the effect of sex and slaughter weight on performance, carcass quality and gross margin per pig place per year. On each farm, an equal number of entire males (EMs), barrows (BAs), immunocastrates (IC) and gilts (GIs) were housed separately in group pens. Pens were randomly divided into three categories of different slaughter weights: 105, 117 and 130 kg BW. In BA, the high average daily feed intake (ADFI) and the lower capacity to gain muscle led to a higher feed conversion ratio (FCR) and lower lean meat percentage in comparison to EM and IC. In all sexes, ADFI and FCR increased with an increasing slaughter weight but the effect of slaughter weight on carcass quality varied between sexes. In BA and GI, slaughter weight had no effect on carcass quality, but in EM and IC, carcass quality improved at higher slaughter weights. Gross margin per pig place per year was calculated as gross margin per pig × barn turnover per year, taking into account fixed costs per round, feed costs and output price per pig. The slaughter weight that gained the highest gross margin per year differed between sexes. Slaughtering BA and GI at 130 kg BW, compared to 105 or 117 kg BW, decreased the gross margin per pig place per year due to the lower margin per pig and barn turnover at higher weights. In IC and EM, no difference in gross margin per pig place per year could be demonstrated between slaughtering at 105, 117 or 130 kg BW. In IC, the increasing gross margin per pig with increasing slaughter weights counteracted with the lower barn turnover. In EM, gross margin per pig did not differ between slaughter weights, but the effect of barn turnover was too small to demonstrate significant differences between slaughter weights on gross margin per pig place per year. In conclusion, slaughter weight has an impact on profitability in BA and GI: they should not be slaughtered at 130 kg BW but at lower weights, but no effect could be demonstrated in EM and IC.
Grape skin is a source of polyphenols with antioxidant and antimicrobial properties. Little information is available regarding its application in animal feeding. The present study investigated the effect of inclusion of fermented (FS) and unfermented (UFS) grape skin at two different doses (30 g/kg, FS30 and UFS30, and 60 g/kg, FS60 and UFS60) and 200 mg/kg vitamin E (α-tocopheryl acetate) in a corn–soybean diet on growth performance, ileal protein digestibility, ileal and excreta total extractable polyphenols content and digestibility, intestinal microbiota and thigh meat oxidation in broiler chickens. Growth performance was depressed in chickens fed UFS and FS diets. A reduction in ileal protein digestibility was also observed in birds fed UFS, being this effect more pronounced in those fed 60 g/kg. The dietary inclusion of grape skin increased both ileal and excreta polyphenols contents, being higher in birds fed UFS than in those fed FS. Excreta moisture content increased in birds fed UFS and FS diets. No effect of dietary inclusion of grape skin was observed on ileal counts of lactic-acid bacteria and Clostridium, but UFS inclusion in the diet reduced ileal count of Escherichia coli as compared with FS dietary inclusion. After 7 days of refrigerated storage, values of thiobarbituric acid reactive substances (TBARS) were lower in chicken meat when grape skin was added in the diet at 60 g/kg instead of 30 g/kg, and meat from birds fed 60 g/kg of grape skin reached TBARS values similar to those of birds supplemented with vitamin E. In conclusion, high doses of grape skin polyphenols depressed growth performance and protein digestibility, and increased excreta moisture content. Unfermented grape skin contained more polyphenols than FS, and its inclusion in the diet led to higher ileal and excreta polyphenols contents and to a lower ileal count of E. coli. Furthermore, the antioxidant potential of the polyphenols present in grape skin was observed after 7 days of meat storage, with the dose of 60 g/kg of grape skin being as effective as vitamin E supplementation in maintaining oxidative stability of meat.
Current feed evaluation systems often assume that fermented starch (i.e. resistant starch (RS)) yields less energy than digested starch. However, growth rates of pigs fed low and high RS diets are often the same when feed is available ad libitum. This may be explained by its effect on digestive processes changing feeding behavior, and consequently energy utilization. This study aims to investigate the effect of RS on nutrient digestion and digesta passage rate in pigs, in combination with its effect on feeding behavior and growth performance under ad libitum conditions. In experiment 1, 20 male pigs (40 ± 2.82 kg) were fed diets containing either 50% waxy maize starch (low in RS (LRS)) or high-amylose maize starch (high in RS (HRS)), and soluble and insoluble indigestible markers. After 14 days of adaptation to the diets, pigs were fed hourly to reach steady state (6 h), dissected, and digesta were collected from eight segments. From the collected samples, nutrient digestion and passage rate of the solid and liquid digesta fraction were determined. In experiment 2, 288 pigs (80 ± 0.48 kg; sex ratio per pen 1 : 1; boar : gilt) were housed in groups of 6. Pigs were ad libitum-fed one of the experimental diets, and slaughtered at approximately 115 kg. Feed intake, growth and carcass parameters were measured. Ileal starch digestibility was greater for LRS-fed than for HRS-fed pigs (98.0% v. 74.0%; P < 0.001), where the additional undigested starch in HRS-fed pigs was fermented in the large intestine. No effects of RS on digesta passage rate of the solid or liquid digesta fraction and on feeding behavior were observed. Growth rate and feed intake did not differ between diets, whereas feed efficiency of HRS-fed pigs was 1%-unit higher than that of LRS-fed pigs (P = 0.041). The efficiency of feed used for carcass gain did not differ between diets indicating that the difference in feed efficiency was determined by the non-carcass fraction. Despite a 30% greater RS intake (of total starch) with HRS than with LRS, carcass gain and feed efficiency used for carcass gain were unaffected. RS did not affect digesta passage rate nor feeding behavior suggesting that the difference in energy intake between fermented and digested starch is compensated for post-absorptively. Our results indicate that the net energy value of fermented starch currently used in pig feed evaluation systems is underestimated and should be reconsidered.
Slow-release urea (SRU) can substitute dietary protein sources in the diet of feedlotting ruminant species . However, different SRU structures show varying results of productive performance. This study was conducted to investigate the effect of different sources of nitrogen on performance, blood parameter, ruminal fermentation and relative population of rumen microorganisms in male Mehraban lambs. Thirty-five male lambs with an average initial BW of 34.7 ± 1.8 kg were assigned randomly to five treatments. Diets consisted of concentrate mixture and mineral and vitamin supplements plus (1) alfalfa and soybean meal, (2) wheat straw and soybean meal, (3) wheat straw and urea, (4) wheat straw and Optigen® (a commercial SRU supplement) and (5) wheat straw and SRU produced in the laboratory. No statistical difference was observed in animal performance and DM intake among treatments. The mean value of ruminal pH and ammonia was higher (P < 0.05) for the SRU diet compared with WU diet. The difference in pH is likely to be due to the higher ammonia level as VFAs concentrations were unchanged. The level of blood urea nitrogen (BUN) was different among treatments (P = 0.065). The highest concentration of BUN was recorded in Optigen diet (183.1 mg/l), whereas the lowest value was recorded in wheat straw-soybean meal diet (147 mg/l). The amount of albumin and total protein was not affected by the treatments. The relative population of total protozoa, Fibrobacter succinogenes, Ruminococcus flavefaciens and Ruminococcus albus in the SRU treatment was higher (P < 0.01) than that in urea treatment at 3 h post-feeding. During the period of lack of high-quality forage and in order to reduce dietary costs, low-quality forage with urea sources can be used in the diet. Results of microbial populations revealed that SRU can be used as a nitrogen source which can sustainably provide nitrogen for rumen microorganism without negative effects on the performance of feedlotting lambs.
The combined addition of branched-chain volatile fatty acids (BCVFAs) and folic acid (FA) could improve growth performance and nutrient utilization by stimulating ruminal microbial growth and enzyme activity. This study was conducted to evaluate the effects of BCVFA and FA addition on growth performance, ruminal fermentation, nutrient digestibility, microbial enzyme activity, microflora and excretion of urinary purine derivatives (PDs) in calves. Thirty-six Chinese Holstein weaned calves (60 ± 5.4 days of age and 107 ± 4.7 kg of BW) were assigned to one of four groups in a randomized block design. Treatments were control (without additives), FA (with 10 mg FA/kg dietary DM), BCVFA (with 5 g BCVFA/kg dietary DM) and the combined addition of FA and BCVFA (10 mg/kg DM of FA and 5 g/kg DM of BCVFA). Supplements were hand-mixed into the top one-third of total mixed ration. Dietary concentrate to maize silage ratio was 50 : 50 on a DM basis. Dietary BCVFA or FA addition did not affect dry matter intake but increased average daily gain (ADG) and feed conversion efficiency. Ruminal pH and ammonia N were lower, and total volatile fatty acids (VFAs) concentration was higher for BCVFA or FA addition than for control. Dietary BCVFA or FA addition did not affect acetate proportion but decreased propionate proportion and increased acetate to propionate ratio. Total tract digestibility of DM, organic matter, CP and NDF was higher for BCVFA or FA addition than for control. Dietary BCVFA or FA addition increased activity of carboxymethyl cellulase and cellobiase, population of total bacteria, fungi, Ruminococcus albus, R. flavefaciens, Fibrobacter succinogenes and Prevotella ruminicola as well as total PD excretion. Ruminal xylanase, pectinase and protease activity and Butyrivibrio fibrisolvens population were increased by BCVFA addition, whereas population of protozoa and methanogens was increased by FA addition. The BCVFA × FA interaction was significant for acetate to propionate ratio, cellobiase activity and total PD excretion, and these variables increased more with FA addition in diet without BCVFA than in diet with BCVFA. The data indicated that supplementation with BCVFA or FA increased ADG, nutrient digestibility, ruminal total VFA concentration and microbial protein synthesis by stimulating ruminal microbial growth and enzyme activity in calves.
The sense of bitter taste is critical for chickens to acquire and select feeds. It is important to understand the roles and mechanisms of bitter taste transduction in chickens. Denatonium is extensively used as a bitter taste receptor agonist to activate bitter taste receptors in recent studies. The objective of this study was to investigate the physiological effects and the potential molecular mechanisms of dietary exposure to a strong bitter taste receptor agonist on the jejunal epithelial cells of yellow-feathered chickens. A total of 240 yellow-feathered chickens were divided into four treatments receiving a normal diet (Control), a low-dose denatonium treatment (Control + 5 mg/kg denatonium), a middle-dose denatonium treatment (Control + 20 mg/kg denatonium) and a high-dose denatonium treatment (Control + 100 mg/kg denatonium) for 56 days, respectively. The results showed that dietary denatonium reduced (P < 0.05) the growth performance of chickens. High-dose denatonium damaged the morphology of the jejunal epithelium and decreased (P < 0.05) the activities of Ca2+-ATPase, sucrase and maltase after 56 days of exposure. Meanwhile, high-dose denatonium increased (P < 0.05) mRNA expressions of bitter taste receptors, which resulted in enhanced apoptosis in jejunal epithelial cells after 56 days of exposure. Furthermore, middle-dose and high-dose denatonium exhibited increased (P < 0.05) mRNA level of claudin 2 and decreased (P < 0.05) mRNA level of occludin after 28 days of exposure. Only high-dose denatonium decreased (P < 0.05) mRNA level of occludin after 56 days of exposure. In conclusion, denatonium manifested deleterious effects on the jejunum of chickens in a dose–effect manner via damaging the morphology of the jejunal epithelium, and inducing apoptosis associated with bitter taste receptors. Our data suggest that bitter-tasting feed additives may have side effects on the growth and development of intestines in chickens.
Plant-derived additives are used to maintain the health and growth performance of livestock. The use of red pepper oil (RPO) has recently attracted considerable scientific interest mainly due to its potential benefits for animals and humans. The present study was conducted to evaluate the effect of dietary supplementation with RPO on growth performance, carcass measurements, antioxidant status and immunity of growing quails between 1 and 5 weeks of age. A total of 240 growing quails (1-week old) were distributed into 5 equal groups consisting of 48 birds (4 replicates of 12 birds each). The first group was fed a basal diet without RPO (0 g/kg diet), and the second, third, fourth and fifth groups received diets containing RPO (0.4, 0.8, 1.2, 1.6 g/kg diet, respectively). The experiment lasted for 5 weeks. At age of 5 weeks, quails were slaughtered for carcass examinations, microbiological analysis of intestine and to determine blood constituents. Data were statistically analyzed by one-way ANOVA. Quails fed with 0.8 g RPO/kg diet showed 12.14%, 14.4% and 15% improvement in live BW, body weight gain and feed conversion ratio, respectively, compared with the control group. Quails that received diets with 1.2 g RPO consumed more feed than the others during the total period (1 to 5 weeks). Plasma globulin levels were significantly decreased (P = 0.0102), but albumin/globulin ratio was significantly increased (P = 0.0009) in birds fed diets containing RPO (0.4 and 1.2 g/kg) compared with those in the control group. Activity of liver enzymes in the plasma was nonsignificantly decreased in quails supplemented with 0.8 g RPO/kg diet compared with those in the control group. Activities of antioxidant enzymes (glutathione and catalase) in the group fed on diets supplemented with RPO (0.8 g/kg) were significantly higher than those in the control group. The inclusion of RPO (0.8 g/kg diet) in quail diets improved (P < 0.05) plasma lipid profile and also decreased pH of the caecal content (P = 0.0280) compared with those in the control group. The caecal bacterial population, Salmonella spp., coliform and Escherichia coli, were lowered (P < 0.05) in the groups treated with RPO (0.8, 1.2 and 1.6 g/kg) compared with those in the control group. In conclusion, dietary supplementation of RPO (0.8 g/kg) can enhance the performance and antioxidant indices and decrease intestinal pathogens and thus improve the health status of Japanese quail.
The small intestine is an important digestive organ and plays a vital role in the life of a pig. We tested the hypothesis that the length of the small intestine is related to growth performance and intestinal functions of piglets. A total of 60 piglets (Duroc × Landrace × Yorkshire), weaned at day 21, were fed an identical diet during a 28-day trial. At the end of the study, all piglets were sacrificed, dissected and grouped according to small intestine lengths (SILs), either short small intestine (SSI), middle small intestine (MSI) or long small intestine (LSI), respectively. Positive relationships between SIL and BW, average daily gain (ADG), average daily feed intake (ADFI) and gain-to-feed ratios (G : F) were observed. Final BW, ADG, ADFI and G : F significantly increased (P < 0.05) in MSI and LSI piglets compared with SSI piglets. Short small intestine and MSI had greater jejunal mucosa sucrase and alkaline phosphatase activities (P < 0.05) than LSI piglets. The mRNA level of solute carrier family 2 member 2 (Slc2a2) in the jejunal mucosa of SSI piglets was the greatest. The MSI piglets had a greater (P < 0.05) ileal villus height than other piglets and greater (P < 0.05) villus height-to-crypt depth ratios than LSI piglets. However, the LSI piglets had a greater (P < 0.05) ileal crypt depth than SSI piglets. No significant differences in duodenal, jejunal, caecal and colonic morphologies were detected among the groups. Moreover, luminal acetate, propionate, butyrate and total short-chain fatty acid contents were greater (P < 0.05) in SSI and MSI piglets than those in LSI piglets. In addition, there was greater serum glucose concentration in MSI piglets than other piglets. Serum albumin concentration in SSI piglets was the lowest. In conclusion, these results indicate that SIL was significantly positively associated with growth performance, and in terms of intestinal morphology and mucosal digestive enzyme activity, the piglets with a medium length of small intestine have better digestion and absorption properties.
Comparison of bacterial counts (BCs) among common bedding types used for dairy cows, including straw, is needed. There is concern that the microbial content of organic bedding is elevated and presents risks for dairy cow udder health and milk quality. The objectives of this study were to investigate: (1) % DM and BCs (Streptococcus spp., all gram-negatives and specifically Klebsiella spp.) in different types of bedding sampled, and to investigate housing and farm management factors associated with % DM and BCs; (2) if bedding type was associated with hygiene of cow body parts (lower-legs, udder, upper-legs and flank) and housing and management factors associated with hygiene and (3) bedding types associated with higher BCs in cow milk at the farm level and bulk tank milk and management factors that were associated with highest BCs. Seventy farms (44 free-stall and 26 tie-stall) in Ontario, Canada were visited 3 times, 7 days apart from October 2014 to February 2015. At each visit, composite samples of unused and used bedding were collected for % DM determination and bacterial culture. Used bedding samples were collected from the back third of selected stalls. Data were analyzed using multivariable linear mixed models. Bedding classification for each farm were: new sand (n = 12), straw and other dry forage (n = 33), wood products (shavings, sawdust; n = 17) and recycled manure solids (RMSs)-compost, digestate (n = 8). In used bedding, across all bedding samples, sand was driest, compared to straw and wood, and RMS; higher % DM was associated with lower Streptococcus spp. count. Streptococcus spp. and all Gram-negative bacteria counts increased with increasing days since additional bedding was added. Gram-negative bacteria counts in used bedding varied with type: RMS = 16.3 ln colony-forming units (cfu)/mL, straw = 13.8 ln cfu/mL, new sand = 13.5 ln cfu/mL, and wood = 10.3 ln cfu/mL. Klebsiella spp. counts in used bedding were lower for wood products (5.9 ln cfu/mL) compared to all other bedding types. Mean cow SCC tended to be higher on farms with narrower stalls. Farms with mattress-based stalls had a higher prevalence of cows with dirty udders compared to those using a deep bedding system (often inorganic sand). Wider stalls were associated with lower bulk milk bacteria count. Lower % DM of used bedding was associated with higher bulk milk bacteria count. In conclusion, bedding management may have a profound impact on milk quality, bacterial concentrations in the bedding substrates, and cow hygiene.
In ruminants, feeding behaviour variables are parameters involved in feed efficiency that show variation among individuals. This study aimed to evaluate during the first two production cycles in ruminants the repeatability of feed intake pattern, which is an important aspect of feeding behaviour. Thirty-five dairy goats from Alpine or Saanen breeds were housed in individual pens at four periods (end of first gestation, middle of first and second lactations and middle of second gestation which is also the end of first lactation) and fed a total mixed ration (TMR) ad libitum. Individual cumulative dry matter intake (DMI) was automatically measured every 2 min during the last 4 days of each period. Feed intake pattern was characterized by several measures related to the quantity of feed eaten or to the rate of intake during the 15 h following the afternoon feed delivery. Two main methods were used: modelling cumulative DMI evolution by an exponential model or by a segmentation-clustering method. The goat ability to sort against dietary fibre was also evaluated. There was a very good repeatability of the aggregate measures between days within a period for a given goat estimated by the day effect within breed and goat, tested on the residual variance (P > 0.95). The correlations between periods were the highest between the second and either the third or fourth periods. With increasing age, goats sorted more against the fibrous part of the TMR and increased their initial rate of intake. Alpine goats ate more slowly than Saanen goats but ate during a longer duration. Principal component analysis (PCA) was performed on all the aggregate measures of feed intake patterns. The factor score plots generated by the PCA highlighted the opposition between the different measures of feed intake patterns and the sorting behaviour. The projection of the animals on the scoring plots showed a breed effect and that there was a continuum for the feed intake pattern of goats. In conclusion, this study showed that the feed intake pattern was highly repeatable for an animal in a given period and between periods. This means that phenotyping goats in a younger age might be of interest, either to select them on feeding behaviour and choose preferentially the slow eaters or to adapt the quantity offered and restrict feed delivery to the fast eaters in order to increase feed efficiency and welfare by limiting the occurrence of acidosis, for example.
Weaning is known to induce important nutritional and energetic stress in piglets. Low-birthweight (LBW) piglets, now frequently observed in swine production, are more likely to be affected. The weaning period is also associated with dysfunctional immune responses, uncontrolled inflammation and oxidative stress conditions that are recognized risk factors for infections and diseases. Mounting evidence indicates that mitochondria, the main cellular sources of energy in the form of adenosine 5′ triphosphate (ATP) and primary sites of reactive oxygen species production, are related to immunity, inflammation and bacterial pathogenesis. However, no information is currently available regarding the link between mitochondrial energy production and oxidative stress in weaned piglets. The objective of this study was to characterize markers of cellular and mitochondrial energy metabolism and oxidative status in both normal-birthweight (NBW) and LBW piglets throughout the peri-weaning period. To conduct the study, 30 multiparous sows were inseminated and litters were standardized to 12 piglets. All the piglets were weighted at day 1 and 120 piglets were selected and assigned to 1 of 2 experimental groups: NBW (n = 60, mean weight of 1.73 ± 0.01 kg) and LBW piglets weighing less than 1.2 kg (n = 60, 1.01 ± 0.01 kg). Then, 10 piglets from each group were selected at 14, 21 (weaning), 23, 25, 29 and 35 days of age to collect plasma and organ (liver, intestine and kidney) samples. Analysis revealed that ATP concentrations were lower in liver of piglets after weaning than during lactation (P < 0.05) thus suggesting a significant impact of weaning stress on mitochondrial energy production. Oxidative damage to DNA (8-hydroxy-2′-deoxyguanosine, 8-OHdG) and proteins (carbonyls) measured in plasma increased after weaning and this coincides with a rise in enzymatic antioxidant activity of glutathione peroxidase (GPx) and superoxide dismutase (SOD) (P < 0.05). Mitochondrial activities of both GPx and SOD are also significantly higher (P < 0.05) in kidney of piglets after weaning. Additionally, oxidative damage to macromolecules is more important in LBW piglets as measured concentrations of 8-OHdG and protein carbonyls are significantly higher (P < 0.05) in plasma and liver samples, respectively, than for NBW piglets. These results provide novel information about the nature, intensity and duration of weaning stress by revealing that weaning induces mitochondrial dysfunction and cellular oxidative stress conditions which last for at least 2 weeks and more severely impact smaller piglets.
As a result of the genetic selection for prolificacy and the improvements in the environment and farms management, litter size has increased in the last few years so that energy requirements of the lactating sow are greater. In addition, selection for feed efficiency of growing pigs is also conducted in maternal lines, and this has led to a decrease in appetite and feed intake that is extended to the lactation period, so the females are not able to obtain the necessary energy and nutrients for milk production and they mobilize their energetic reserves. When this mobilization is excessive, reproductive and health problems occur which ends up in an early sow culling. In this context, it has been suggested to improve feed efficiency at lactation through genetic selection. The aim of this study is to know, in a Duroc population, the genetic determinism of sow feed efficiency during lactation and traits involved in its definition, as well as genetic and environmental associations between them. The studied traits are daily lactation feed intake (dLFI), daily sow weight balance (dSWB), backfat thickness balance (BFTB), daily litter weight gain (dLWG), sow residual feed intake (RFI) and sow restricted residual feed intake (RRFI) during lactation. Data corresponded to 851 parities from 581 Duroc sows. A Bayesian analysis was performed using Gibbs sampling. A four-trait repeatability animal model was implemented including the systematic factors of batch and parity order, the standardized covariates of sow weight (SWf) and litter weight (LWs) at farrowing for all traits and lactation length for BFTB. The posterior mean (posterior SD) of heritabilities were: 0.09 (0.03) for dLFI, 0.37 (0.07) for dSWB, 0.09 (0.03) for BFTB, 0.22 (0.05) for dLWG, 0.04 (0.02) for RFI and null for RRFI. The genetic correlation between dLFI and dSWB was high and positive (0.74 (0.11)) and null between dLFI and BFTB. Genetic correlation was favourable between RFI and dLFI and BFTB (0.71 (0.16) and −0.69 (0.18)), respectively. The other genetic correlations were not statistically different from zero. The phenotypic correlations were low and positive between dLFI and dSWB (0.27 (0.03), dSWB and BFTB (0.25 (0.04)), and between dLFI and dLWG (0.16 (0.03)). Therefore, in the population under study, the improvement of the lactation feed efficiency would be possible either using RFI, which would not have unfavourable correlated effects, or through an index including its component traits.
In vitro production (IVP) of embryos and associated technologies in cattle have shown significant progress in recent years, in part driven by a better understanding of the full potential of these tools by end users. The combination of IVP with sexed semen (SS) and genomic selection (GS) is being successfully and widely used in North America, South America and Europe. The main advantages offered by these technologies include a higher number of embryos and pregnancies per unit of time, and a wider range of potential female donors from which to retrieve oocytes (including open cyclic females and ones up to 3 months pregnant), including high index genomic calves, a reduced number of sperm required to produce embryos and increased chances of obtaining the desired sex of offspring. However, there are still unresolved aspects of IVP of embryos that limit a wider implementation of the technology, including potentially reduced fertility from the use of SS, reduced oocyte quality after in vitro oocyte maturation and lower embryo cryotolerance, resulting in reduced pregnancy rates compared to in vivo–produced embryos. Nevertheless, promising research results have been reported, and work is in progress to address current deficiencies. The combination of GS, IVP and SS has proven successful in the commercial field in several countries assisting practitioners and cattle producers to improve reproductive performance, efficiency and genetic gain.
Low methane (CH4) emissions from sheep fed forage rape (Brassica napus) might be related to low ruminal pH value. In this study, sodium carbonate (Na2CO3: SC) was supplemented to the diet to alter ruminal pH for evaluation of its role in CH4 emissions from sheep fed forage rape. Fourteen intact and eight fistulated Romney sheep were adapted to forage rape over 32 days and then randomly allocated to one of two groups: diets supplemented with SC or not (control). Methane emissions were measured from intact sheep in seven experimental periods. In parallel, ruminal pH and fermentation characteristics were assessed using the fistulated sheep. In the first (P01) and the second (P02) periods, none of the sheep received SC to examine the baseline CH4 emissions. The P01 period was used as a covariate for analysis of gas emission measurements in subsequent measurement periods. Sodium carbonate was offered at 5% of the forage DM in P03 and P04, increased to 8% in P05 and P06 to assess the effect of pH increase on CH4 emissions and stopped in P07 to assess if the CH4 emissions reverted to values similar to those measured before the supplementation started. Methane yield (g/kg forage DM intake) was similar for the sheep in both groups during P02 and P03, but sheep supplemented with SC in the diet emitted 36%, 49% and 30% more CH4 per unit of forage DM intake than those in the control group during P04, P05 and P06, respectively. Emissions returned to similar levels when SC supplementation was ceased in P07. Ruminal pH was 0.412 to 0.565 units higher in SC supplemented sheep than for the control group during the SC treatment periods. Based on the lack of an immediate response in CH4 emissions to the supplementation of SC in P03, the positive responses in P04 to P06 and the rapid disappearance of the response after supplementation with SC stopped in P07, we propose a new hypothesis that ruminal pH effects on CH4 emissions are possibly through medium-term changes in microbial and methanogenic communities in the rumen, rather than a direct, short-term impact on methanogens per se. In conclusion, SC supplemented to the forage rape diet of sheep increased rumen pH, leading to an increase in CH4 emissions. Low ruminal pH in sheep fed forage rape explains, at least partially, the reported low CH4 emissions from sheep fed with this forage crop.