We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Lameness in sows is an emerging disease condition with major effects on animal welfare and economics. Yet the direct impact on reproduction results remains unclear. The present field study investigated the impact of lameness and claw lesions throughout the reproductive cycle on (re)production results of sows. In five farms, a total of 491 group-housed sows were followed up for a period of one reproductive cycle. Sows were assessed for lameness every time they were moved to another area in the farm. Claw lesions were scored at the beginning and at the end of the cycle. Reproduction results included the number of live-born piglets, stillborn piglets, mummified fetuses and crushed piglets, weaning-to-oestrus interval and the presence of sows not showing oestrus post weaning, returning to service and aborting. Sows that left the group were recorded and the reason was noted. A mean prevalence of lameness of 5.9% was found, although it depended on the time in the productive cycle. The highest percentage of lame sows (8.1%) was found when sows were moved from the post-weaning to the gestation stable. No significant associations were found between lameness and reproduction parameters with the exception of the effect on mummified foetuses. Wall cracks, white line lesions, heel lesions and skin lesions did have an effect on farrowing performance. Of all sows, 22% left the group throughout the study, and almost half of these sows were removed from the farm. Lameness was the second most important reason for culling. Sows culled because of lameness were significantly younger compared with sows culled for other reasons (parity: 2.6 ± 1.3v. 4.0 ± 1.8). In conclusion, the present results indicate that lameness mainly affects farm productivity indirectly through its effect on sow longevity, whereas claw lesions directly affect some reproductive parameters. The high percentage of lame sows in the insemination stable indicate that risk factor studies should not only focus on the gestation stable, but also on housing conditions in the insemination stable.
The objective was to study the effect of rumen-escape starch and coarseness of ingredients in pelleted concentrates on performance, carcass quality and rumen wall characteristics in rosé veal calf production. Two alternative concentrates (Coarse and Slow) were compared with a traditional (Control) concentrate. Control was based on finely ground ingredients, whereas in Coarse, the same ingredients were coarsely ground resulting in a mean particle size before pelleting of 1.5 in Coarse and 0.6 mm in Control. Slow compared with Control and Coarse contained finely ground sorghum and corn instead of barley and wheat which increased the amount of rumen-escape starch to 59 compared with 22 g/kg in Control and Coarse. All concentrates had the same total starch (362 g/kg), NDF (168 g/kg), CP (154 g/kg) and DE (15.5 MJ/kg DM) content and a pellet diameter of 3.5 to 4 mm. Use of an ‘indicator of starch digestibility’ method gave a value of 98.6% for Control and Coarse and 91.1% for Slow (P < 0.001). A total of 57 Holstein bull calves (n = 19 per treatment) were offered one of the three concentrates ad libitum from weaning (
$$$2\frac{1}{2}$$$
months of age) to slaughter (<10 months of age). Concentrate intake was recorded individually. Barley straw was available ad libitum but intake was not recorded. Average daily gain (1.43 kg/day), concentrate conversion efficiency (3.7 kg DM concentrate/kg gain), LW at slaughter (386 kg), carcass weight (194 kg) and EUROP conformation (3.9) were not affected by type of concentrate (P > 0.05). Papillae length and shape evaluated in atrium ruminis and the cranial part of the ventral rumen sac at slaughter were not affected by type of concentrate (P > 0.05). Rumen wall characteristics showed degrees of plaque formation (i.e., papillary aggregation), hyperaemia and necrotic areas in all treatment groups, but with no general difference between type of concentrate (P > 0.05). Incidence of liver abscesses (LAs, 16%) was not affected by type of concentrate (P > 0.05). There were no differences in performance or rumen wall characteristics between liver-abscessed and non-abscessed calves. The results show a high level of production performance with the three types of pelleted concentrates and indicates that neither the more coarse ingredients nor the additional rumen-escape starch tested, when fed ad libitum, could improve rumen wall characteristics or reduce LAs of rosé veal calves.
The present study was designed to measure the use of various, simultaneously available resources in a complex housing environment in juvenile blue foxes. Twelve blue fox sibling (male–female) pairs were housed in two-section experimental cages from the age of 8 weeks until the age of 7 months (from June to December). Each experimental cage was furnished with two platforms, a nest box, a sand box and a wooden block. This housing set-up provided the foxes with social contact, and an opportunity for oral manipulation, scratching and nesting, as well as the choice of staying on a solid floor material or on an elevated location. The foxes’ behaviour was recorded at three time points during autumn (September, November and December). The foxes used all available resources. The most utilised resource was the nest box, possibly because it could be utilised in several ways (as a shelter, an elevated location, an object for scratching and for oral manipulation). The foxes also stayed more in the cage section containing the nest box than in the cage section containing a sand box. The foxes rested much on the cage floor, but they also used the interior of the nest box and elevated locations for resting. Social contact often occurred during resting. Thus, the nest box and elevated location, in conjunction with social contact seem to be valuable while resting. While active, the foxes utilised the cage floor and roof of the nest box instead of the platforms. Scratching, digging and an interaction with the wooden block were seldom observed. Activity occurred mainly on the ‘empty’ cage area. In conclusion, all studied resources provided blue foxes with a distinct value, as they all were used in the complex housing environment. The nest box is used most and for most variable behaviours.
This study investigated some aspects of breeding management in the Italian Heavy Draught Horse breed, aiming at improving its efficiency at stud farm level. A first aim was to evaluate the risk of unsuccessful reproduction in mares after an early (3 years) or normal (4 years) age at first foaling, in interaction with different stud rearing systems. A second objective was the examination of the mean time length in which young 2-year-old stallions maintain a genetic superiority on older proven stallions, identifying a ‘genetic lifespan’ in which young stallions can be safely used for reducing the cost of services. Reproductive performance at first and second foaling of 1513 mares were used. Mares had a normal first foal at 3 (n = 745) or 4 years of age (n = 768) in stud farms on the basis of stable (n = 488), feral (n = 345) or semi-feral (n = 680) rearing systems. Logistic regression analysis was performed by modeling the risk of unsuccessful reproduction in the subsequent season (i.e., results at second foaling), as affected by the interaction of age at first foaling × rearing system (six classes). Genetic lifespan of young stallions was estimated by regressing the least square means from a mixed model analysis for repeated measures of individual differences in ‘total merit’ estimated breeding values (EBVs) between young stallions (mean no. of 45/year) and the mean EBV of all proven stallions in a given year of genetic evaluation (mean no. of 483/year). Young stallions born between 1999 and 2005 were used, following each generation (i.e., birth year) from 2 to 7 subsequent yearly genetic evaluations. In comparison with the best reproductive success of second foaling at 4 years in stable systems, the greatest risk of unsuccessful reproduction was at 3 years in feral (+167%) and 3 years in semi-feral conditions (+91%). Young stallions showed a 0.50 s.d. greater EBV at the first evaluation than proven stallions, with a mean annual decrease in EBV of 0.07 s.d./year on proven stallions. Optimal breeding management could be obtained in stud farms by limiting foaling at 3 years, particularly in feral and semi-feral rearing systems, and using young stallions for 3 to 4 years to maintain a perceptible selection differential with older proven stallions and to reduce cost of services. Later, the selection differential with proven stallions become less consistent and genetic improvement could be slowed down.
In a previous study, carnitine supplementation to piglets during the suckling period resulted in an increased total muscle fibre number at weaning in piglets of low birth weight. The objective of the present study was to investigate whether this effect is maintained until market age and whether this would attenuate the negative consequences of low birth weight on carcass and meat quality. Using a split-plot design with litter as block, sex as whole plot and treatment as subplot, the effects of early-postnatal l-carnitine supplementation on female and castrated male piglets of low birth weight were investigated on a total of 56 German Landrace piglets from 14 litters. From days 7 to 27 of age piglets were orally supplemented once daily with 400 mg of l-carnitine dissolved in 1 ml of water or received an equal volume of water without carnitine. From weaning (day 28) until slaughter (day 166 of age) all pigs were fed standard diets. At weaning, carnitine-supplemented piglets had a twofold increased concentration of free carnitine (P < 0.001) and a lower concentration of non-esterified fatty acids (P < 0.05) in blood plasma indicating that carnitine became bioavailable and increased fatty acid utilization during the period of supplementation. Growth performance was not influenced by treatment in any growth period. Dual-energy X-ray absorptiometry revealed no differences in body composition between groups in weeks 12, 16 and 20 of age. LW at slaughter, carcass weight, measures of meat yield and fat accretion, as well as body composition by chemical analyses and dissection of primal cuts did not differ between treatments. No differences between control and carnitine-treated pigs in total fibre number (P = 0.85) and fibre cross-sectional area (P = 0.68) in m. semitendinosus (ST) measured at slaughter could be observed. The carnitine group tended to exhibit a smaller proportion of slow-twitch oxidative fibres (P = 0.08), a greater proportion of fast-twitch glycolytic fibres (P = 0.11), and increased specific lactate dehydrogenase activity (P = 0.09) in ST indicating a more glycolytic muscle metabolism. Compared with the controls, a lower pH24 value was observed (P = 0.05) in ST muscle of carnitine-supplemented pigs, which – in castrates only – was associated with an increased drip loss (P < 0.01). Meat quality traits in m. longissimus were not influenced by treatment. In conclusion, our hypothesis that early-postnatal carnitine supplementation to piglets of low birth weight permanently increases myofibre number and improves later carcass and meat quality could not be confirmed by this experiment.
A modified rinsing method for the in situ technique was developed to separate, isolate and characterise the soluble (S), the insoluble washout (W–S) and the non-washout fractions (D + U) within one procedure. For non-incubated bags (t = 0 h), this method was compared with the conventional, Combined Fractionation (CF) method that measures the D + U and S fractions in separate steps and subsequently calculates the W–S fraction. The modified method was based on rinsing of nylon bags in a closed vessel containing a buffer solution (pH 6.2) during 1 h, where shaking speeds of 40, 100, and 160 strokes per minutes (spm) were evaluated, and tested for six feed ingredients (faba beans, maize, oats, peas, soya beans and wheat) and four forages (two ryegrass silages and two maize silages). The average recoveries as the sum of all fractions were 0.972 ± 0.041 for N and 0.990 ± 0.050 for starch (mean ± s.d.). The mean W–S fraction increased with increasing shaking speed and varied between 0.017 (N) and 0.083 (starch) at 40 spm and 0.078 (N) and 0.303 (starch) at 160 spm, respectively. For ryegrass silages, the W–S fraction was absent at all shaking speeds, but was present in the CF method. The modified method, in particular at 40 and 100 spm, reduced the loss of small particles during rinsing, resulting in lower W–S and higher D + U fractions for N and starch compared with the CF method. For soya beans and ryegrass silage, the modified method reduced the S fraction of N compared with the CF method. The results obtained at 160 spm showed the best comparison with those from the CF method. The W–S fraction of the feedstuff obtained at 160 spm contained mainly particles smaller than 40 μm (0.908 ± 0.086). In most feedstuff, starch was the most abundant chemical component in the W–S fraction and its content (726 ± 75 g/kg DM) was higher than in the D + U fraction (405 ± 177 g/kg DM). Alkaline-soluble proteins were the dominant N-containing components in the W–S fraction of dry feed ingredients and its relative content (0.79 ± 0.18 of total N in W–S) was higher than in the D + U fraction (0.59 ± 0.07 of total N in D + U) for all feedstuff except maize. The molecular weight distribution of the alkaline-soluble proteins differed between the W–S and the D + U fractions of all dry feed ingredients, except soya beans and wheat.
In this study, 10 samples of rapeseed meal (RSM) from 10 different oil plants in Germany were examined. In situ rumen degradation of CP was determined by incubation over 1, 2, 4, 8, 16, 32 and 72 h in duplicate per time point using three rumen fistulated dry cows. Degradation kinetics were estimated by an exponential model and effective CP degradation was calculated. Degradation was corrected for small particle loss as the difference between washing loss and water-soluble fraction. Amino acid analysis was carried out in the samples and in the residues after 8 and 16 h of incubation in situ and degradation of individual amino acids was calculated for these incubation times. In vitro pepsin–pancreatin digestibility of CP (IPD) was determined in the samples as well as in the 8 and 16 h residues. Effective CP degradation for a rumen outflow rate of 8%/h (ED8) averaged 54.3% with a considerable variation among samples ranging from 44.3% to 62.7%. A multiple regression equation containing acid detergent insoluble N, total glucosinolates and petroleum ether extract as independent variables predicted ED8 with satisfying accuracy (R2 = 0.74; RSD = 6.4%). Degradation of amino acids was different from that of CP for most amino acids studied, especially after 8 h of incubation. Compared with CP, degradation of essential amino acids was predominantly lower while degradation of non-essential amino acids was higher in most cases. However, for lysine and methionine no distinct difference with CP degradation was found. Degradation of individual amino acids was predicted from CP degradation with high accuracy using linear regression equations. Average IPD of RSM was 79.8 ± 2.6%. IPD was lower in the incubation residues and decreased with longer incubation time and increasing rumen degradation, respectively.
This study investigated the effects of different levels of dietary L-arginine (L-Arg) supplementation on the abdominal fat pad, circulating lipids, hepatic fatty acid synthase (FAS) gene expression, gene expression related to fatty acid β-oxidation, and the performance of broiler chickens. We tested whether the dietary L-Arg levels affected the expression of genes related to lipid metabolism in order to reduce body fat deposition. A total of 192 broiler chickens (Cobb 500) aged 21 days with an average BW of 920 ± 15 g were randomly assigned to four groups (six broilers per replicate and eight replicates per treatment). The control group was fed a basal diet, whereas the treatment groups were fed basal diets supplemented with 0.25%, 0.50%, or 1.00% L-Arg for 3 weeks. The average daily feed intake, average daily gain and feed : gain ratio were not affected by the dietary L-Arg levels. However, chickens supplemented with L-Arg had lower abdominal fat content, plasma triglyceride (TG), total cholesterol (TC) concentrations, hepatic FAS mRNA expression and increased heart carnitine palmitoyl transferase1 (CPT1) and 3-hydroxyacyl-CoA dehydrogenase (3HADH) mRNA expression. These findings suggest that the addition of 0.25% L-Arg may reduce the plasma TC concentration by decreasing hepatic 3-hydroxyl-3-methylglutaryl-CoA reductase mRNA expression. This may lower the plasma TG and abdominal fat content by suppressing hepatic FAS mRNA expression and enhancing CPT1 and 3HADH (genes related to fatty acid β-oxidation) mRNA expression in the hearts of broiler chickens.
Three dominant morphological fractions (i.e. leaf blade (LB), leaf sheath (LS) and stem) were analysed for chemical composition and ruminal degradability in three rice straw varieties. In one variety treated with alkali, cell wall features were also characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy. The highest concentrations of cell wall carbohydrates (hemicellulose and cellulose) were observed in LS, whereas the highest concentrations of non-fibre (silica, phenolic compounds and CP) and lignin were recorded for LB. The stem had the lowest silica and hemicellulose contents but intermediate levels of other components. In terms of ruminal degradability, stem ranked higher than LB, which was followed by LS. Hemicellulose was found to be less degradable than either dry matter or cellulose in all the three fractions investigated. FTIR results indicated that the highest levels of hydrogen bonding, esterification and crystallinity within the cell wall components belonged to LS. In the alkaline treatment, these indices decreased to a larger extent for leaf fractions and a greater improvement was achieved in the degradability of LB and LS compared with that of stem. In the 24-h ruminal incubation, the silicified layer of epidermis and the underlying cell walls showed a rigid structure in the control fractions, whereas the treatment with NaOH resulted in crimping of the silicified cuticle layer and the loss of integrity in cell structure. Despite the highest silica and lignin contents observed in LB, LS showed the lowest degradability, which might be due to its high level of hydrogen bonding, crystallinity and esterification within its cell wall components as well as its high hemicellulose content.
The information stored in animal feed databases is highly variable, in terms of both provenance and quality; therefore, data pre-processing is essential to ensure reliable results. Yet, pre-processing at best tends to be unsystematic; at worst, it may even be wholly ignored. This paper sought to develop a systematic approach to the various stages involved in pre-processing to improve feed database outputs. The database used contained analytical and nutritional data on roughly 20 000 alfalfa samples. A range of techniques were examined for integrating data from different sources, for detecting duplicates and, particularly, for detecting outliers. Special attention was paid to the comparison of univariate and multivariate solutions. Major issues relating to the heterogeneous nature of data contained in this database were explored, the observed outliers were characterized and ad hoc routines were designed for error control. Finally, a heuristic diagram was designed to systematize the various aspects involved in the detection and management of outliers and errors.
The diet self-regulation ability of goats during late lactation has been studied with regard to their production level. Two groups of seven Girgentana goats producing 1100 ± 157 g/day (H group) and 613 ± 138 g/day (L group) were housed in individual pens and were given alfalfa pelleted hay (1.5 kg), whole grains of maize (0.5 kg), barley (0.5 kg), faba bean (0.5 kg) and pelleted sunflower cake (0.5 kg) on a daily basis. During a 7-day pre-experimental period, goats received a mixed ration based on the same feeds used during the experimental period (1.5 kg of hay and 0.4 kg of each concentrate). Individual choice of feeds was continuously recorded for 7 days using a 24-h IR video surveillance system equipped with four video cameras. The nutrient intake in both groups was much higher than needed. Goats in the H group ate more (2016.3 v. 1744.3 g dry matter (DM)/day) and selected less hay (26.9% v. 34.6% DM), more high-protein feeds (faba bean and sunflower cake: 14.0% and 15.9% v. 8.8% and 7.9% DM, respectively) and less maize (21.5% v. 25.0% DM), reaching a higher CP concentration in the diet (17.3% v. 15.0% DM) compared with the goats in the L group. During the 24-h trial period, hay was more constantly selected (on average never reaching <20% of the total hourly basis feeding time, apart from the first hour after feed administration) compared with concentrate feeds. This feeding behaviour has probably exercised a ‘curative’ effect that enabled the goats to continue to take in very high levels of starch and protein, without manifesting any symptom of metabolic disease. Shifting goats from the pre-experimental diet, based on a mixture of the same feeds used during the experimental period, to the free-choice feeding caused more than 20% increase in milk production in both groups. From the results of the intake, we are unable to conclude that the goats can select their diet to meet their requirements, as goats consumed much more than needed. However, when free to choose their diet, the animals improved milk performance, despite the late-lactation stage.
The international Brown Swiss cattle population pedigree was studied to measure genetic variations and to identify the most influential animals. Twenty-two countries provided pedigree information on 71 497 Brown Swiss bulls used for artificial insemination (AI). The total number of animals with the pedigree is 181 094. The mean inbreeding coefficient for the pedigree population was 0.77%. There was, in most cases, an increase in the mean inbreeding coefficient, with the highest value at 2.89% during the last 5-year period (2000 to 2004). The mean average relatedness for the pedigree population was 1.1%. The effective population size in 2004 was 204. There was notable variation between average generation intervals for the four parental pathways. The longest average generation interval, at 8.73 years, was observed in the sire–son pathway. The average generation interval for the whole population was 6.53 years. Most genetically influential individuals were sires. The highest contributing founder was a sire with a 3.22% contribution, and the highest contributing founder dam made a contribution of 1.75%. The effective number of founders and the effective number of ancestors were 141 and 88, respectively. The study showed that genetic variation within the pedigree population has been decreasing over recent years. Increasing the number of AI bulls with a low individual coefficient of inbreeding could help to maintain a good level of genetic variation in the Brown Swiss population.
The effect of sex on carcass measurement, physico-chemical properties, nutritional value and sensory characteristics of foal meat slaughtered at 15 months was investigated. Twelve foals (six females and six males) from an extensive production system in freedom regimen were used for this study. Sex had no statistical influence on carcass measurements, chemical composition, colour parameters, textural properties, amino acid content and sensory characteristics. In contrast, there was a clear effect on the fatty acid profile of longissimus dorsi. Slaughter weight was not significantly (P > 0.05) different between sexes, although higher values were observed in male group compared with female group (194 v. 184 kg). As a consequence, this trend affected carcass weight being slightly (P > 0.05) heavier in the male group than in the female group. On the other hand, cooking loss samples from males showed significantly higher values than those from females (21.50% v. 14.96%, P < 0.05). From a nutritional point of view, the n-6/n-3 ratio in both sexes was within the recommended range for the human diet and this ratio was ostensibly different between the sexes (1.83 v. 1.36, P < 0.05, for male and female, respectively) and it showed a strong correlation (r = −0.91, P < 0.01) with C18:3n-3 content.
This study was designed to evaluate the effects of algal and yeast β-glucans on the porcine gastrointestinal microbiota, specifically the community of Lactobacillus, Bifidobacterium and coliforms. A total of 48 pigs were fed four diets over a 28-day period to determine the effect that each had on these communities. The control diet consisted of wheat and soya bean meal. The remaining three diets contained wheat and soya bean meal supplemented with β-glucan at 250 g/tonne from Laminaria digitata, Laminaria hyperborea or Saccharomyces cerevisiae. Faecal samples were collected from animals before feeding each diet and after the feeding period. The animals were slaughtered the following day and samples were collected from the stomach, ileum, caecum, proximal colon and distal colon. Alterations in Lactobacillus in the gastrointestinal tract (GIT) were analysed using denaturing gradient gel electrophoresis (DGGE) profiles generated by group-specific 16S rRNA gene PCR amplicons. Plate count analysis was also performed to quantify total coliforms. DGGE profiles indicated that all β-glucan diets provoked the emergence of a richer community of Lactobacillus. The richest community of lactobacilli emerged after feeding L. digitata (LD β-glucan). Plate count analysis revealed that the L. hyperborea (LH β-glucan) diet had a statistically significant effect on the coliform counts in the proximal colon in comparison with the control diet. β-glucan from L. digitata and S. cerevisiae also generally reduced coliforms but to a lesser extent. Nevertheless, the β-glucan diets did not significantly reduce levels of Lactobacillus or Bifidobacterium. DGGE analysis of GIT samples indicated that the three β-glucan diets generally promoted the establishment of a more varied range of Lactobacillus species in the caecum, proximal and distal colon. The LH β-glucan had the most profound reducing effect on coliform counts when compared with the control diet and diets supplemented with L. digitata and S. cerevisiae β-glucans.
The aim of this paper was to identify pre-slaughter factors that modify total and insoluble collagen contents in bovine muscle to construct a model of collagen dynamics. The meta-analyses were performed with primary data of total (n = 1165) and insoluble (n = 1145) collagen contents from INRA experiments obtained from different muscles in young bulls, cows and steers. According to both the bibliography and meta-analyses, total collagen content and solubility were greatly affected by the muscle (type). Moreover, the pattern of the evolution of collagen characteristics was similar among Longissimus, Semitendinosus and Triceps brachii muscles in young bulls. In cows, collagen contents in the Triceps brachii muscle had delayed dynamics compared with the other muscles. Collagen characteristics differed among breeds because of variation in the maturity of the breed. Similarly, according to the meta-analyses, total and insoluble collagen content evolutions with the degree of maturity (DOM; proportion of adult weight reached at slaughter) were different in dairy and rustic breeds from those of beef breeds, especially in bulls. Although the relationships between collagen content and DOM were quantified in different muscles and sexes, the precision of the fitted equations was not sufficient for prediction. Consequently, relying on the hypotheses raised by the meta-analysis and the literature, an approach to further develop a dynamic mechanistic model of soluble and insoluble collagen content is proposed.
Domestication of animals has resulted in phenotypic changes by means of natural and human-directed selection. Body composition is important for farm animals because it reflects the status of energy reserves. Thus, there is the possibility that farm animals as providers of food have been more affected by human-directed selection for body composition than laboratory animals. In this study, an analysis was conducted to determine what similarities and differences in body composition occur between farm and laboratory animals using literature data obtained from seven comparative slaughter studies (n = 136 observations). Farm animals from four species (cattle, goats, pigs and sheep) were all castrated males, whereas laboratory animals from three species (dogs, mice and rats) comprised males and/or females. All animals were fed ad libitum. The allometric equation, Y = aXb, was used to determine the influence of species on the accretion rates of chemical components (Y, kg) relative to the growth of the empty body, fat-free empty body or protein weights (X, kg). There were differences between farm and laboratory animals in terms of the allometric growth coefficients for chemical components relative to the empty BW and fat-free empty BW (P < 0.01); farm animals had more rapid accretion rates of fat (P < 0.01) but laboratory animals had more rapid accretion rates of protein, water and ash (P < 0.01). In contrast, there was no difference in terms of the allometric growth coefficients for protein and water within farm animals (P > 0.2). The allometric growth coefficients for ash weight relative to protein weight for six species except sheep were not different from a value of 1 (P > 0.1), whereas that of sheep was smaller than 1 (P < 0.01). When compared at the same fat content of the empty body, the rate of change in water content (%) per unit change in fat content (%) was not different (P > 0.05) across farm animal species and similar ash-to-protein ratios were obtained except for dogs. The fraction of empty body energy gain retained as fat increased in a curvilinear manner, and there was little variation among farm animals at the same fat content of the empty body. These findings may provide the opportunity to develop a general model to predict empty body composition across farm animal species. In contrast, there were considerable differences of chemical body composition between farm and laboratory animals.