We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In a cross-sectional study, data from records of cattle slaughtered over a 1-year period at a large abattoir in South West England were analysed using an ordered category response model to investigate the inter-relationships between age, sex and breed on development of the permanent anterior (PA) teeth. Using the model, transition points at which there was a 50% probability of membership of each category of paired PA teeth were identified. Data from ∼60 000 animals were initially analysed for age and sex effect. The age transition was found to be ∼23 months moving from zero to two teeth; 30 months for two to four teeth; 37 months for four to six teeth and 42 months for six to eight teeth. Males were found to develop, on average, ∼22 days earlier than females across all stages. A reduced data set of ∼23 000 animals registered as pure-bred only was used to compare breed and type interactions and to investigate sex effects within the sub-categories. Breeds were grouped into dairy and beef-type and beef breeds split into native and continental. It was found that dairy-types moved through the transition points earlier than beef-types across all stages (interval varying between ∼8 and 12 weeks) and that collectively, native beef breeds moved through the transition points by up to 3 weeks earlier than the continental beef breeds. Interestingly, in contrast to beef animals, dairy females matured before dairy males. However, the magnitude of the difference between dairy females and males diminished at the later stages of development. Differences were found between breeds. Across the first three stages, Ayrshires and Guernseys developed between 3 and 6 weeks later than Friesian/Holsteins and Simmental, Limousin and Blonde Aquitaine 6 and 8 weeks later than Aberdeen Angus. Herefords, Charolais and South Devon developed later but by a smaller interval and Red Devon and Galloway showed the largest individual effect with transition delayed by 8 to 12 weeks.
Piglet birth weight and litter uniformity are important for piglet survival. Insulin-stimulating sow diets before mating may improve subsequent piglet birth weights and litter uniformity, but the physiological mechanisms involved are not clear. This study evaluated effects of different levels of insulin-stimulating feed components (dextrose plus starch; fed twice daily) during the weaning-to-estrus interval (WEI) on plasma insulin and IGF-1 concentrations, and on follicle development and subsequent luteal, fetal and placental development and uniformity at days 42 to 43 of pregnancy. During WEI, multiparous sows were isocalorically fed diets supplemented with 375 g/day dextrose plus 375 g/day corn starch (INS-H), with 172 g/day dextrose plus 172 g/day corn starch and 144 g/day animal fat (INS-L), or with 263 g/day animal fat (CON). Jugular vein catheters were inserted through the ear vein at 1.5 days before weaning to asses plasma insulin and IGF-1 concentrations. After estrus, all sows received a standard gestation diet until slaughter at days 42 to 43 of pregnancy. The dextrose plus starch-diets enhanced the postprandial insulin response in a dose-dependent manner (e.g. at day 2 insulin area under the curve was 4516 μU/444 min for CON, 8197 μU/444 min for INS-L and 10 894 μU/444 min for INS-H; s.e.m. = 694; P < 0.001), but did not affect plasma IGF-1 concentrations during the first 3 days of WEI. Follicle development and subsequent luteal, fetal and placental development and uniformity were not affected by the dietary treatments, nor related to plasma insulin and IGF-1 concentrations during WEI. Pre-weaning plasma insulin and IGF-1 concentrations were negatively related to sow body condition loss during lactation, but were not related to subsequent reproduction characteristics. This study shows that dietary dextrose plus starch are effective in stimulating insulin secretion (both postprandial peak and long-term concentration), but not IGF-1 secretion during the first 3 days after weaning in multiparous sows. The extreme insulin-stimulating diets during WEI did, however, not improve follicle development, or subsequent development and uniformity of fetuses and placentas in these high-prolific sows (27.0 ± 0.6 ovulations; 18.6 ± 0.6 vital fetuses).
Traditional mixed livestock cereal- and pasture-based sheep farming systems in Europe are threatened by intensification and specialisation processes. However, the intensification process does not always yield improved economic results or efficiency. This study involved a group of farmers that raised an autochthonous sheep breed (Ojinegra de Teruel) in an unfavourable area of North-East Spain. This study aimed to typify the farms and elucidate the existing links between economic performance and certain sustainability indicators (i.e. productivity, self-sufficiency and diversification). Information was obtained through direct interviews with 30 farms (73% of the farmers belonging to the breeders association). Interviews were conducted in 2009 and involved 32 indicators regarding farm structure, management and economic performance. With a principal component analysis, three factors were obtained explaining 77.9% of the original variance. This factors were named as inputs/self-sufficiency, which included the use of on-farm feeds, the amount of variable costs per ewe and economic performance; productivity, which included lamb productivity and economic autonomy; and productive orientation, which included the degree of specialisation in production. A cluster analysis identified the following four groups of farms: high-input intensive system; low-input self-sufficient system; specialised livestock system; and diversified crops-livestock system. In conclusion, despite the large variability between and within groups, the following factors that explain the economic profitability of farms were identified: (i) high feed self-sufficiency and low variable costs enhance the economic performance (per labour unit) of the farms; (ii) animal productivity reduces subsidy dependence, but does not necessarily imply better economic performance; and (iii) diversity of production enhances farm flexibility, but is not related to economic performance.
Inclusion of variation in deterministic nutritional models for growth by repeating simulations using different sets of parameters has been performed in literature without or with only hypothetic consideration of the covariance structure among parameters. However, a description of the structure of links among parameters describing individuals is required to generate realistic sets of parameters. In this study, the mean and covariance structure of model parameters describing feed intake and growth were analyzed from 10 batches of crossbred gilts and barrows. Data were obtained from different crossbreeds, originating from Large White × Landrace sows and nine sire lines. Pigs were group-housed (12 pigs/pen) and performance testing was carried out from 70 days of age to ∼110 kg BW. Daily feed intake (DFI) was recorded using automatic feeding stations and BW was measured at least every 3 weeks. A growth model was used to characterize individual pigs based on the observed DFI and BW. In this model, a Gompertz function was used to describe protein deposition and the resulting BW gain. A gamma function (expressing DFI as multiples of maintenance) was used to express the relationship between DFI and BW. Each pig was characterized through a set of five parameters: BW70 (BW at 70 days of age), BGompertz (a precocity parameter) PDm (mean protein deposition rate) and DFI50 and DFI100 (DFI at 50 and 100 kg BW, respectively). The data set included profiles for 1288 pigs for which no eating or growth disorders were observed (e.g. because of disease). All parameters were affected by sex (except for BW70) and batch, but not by the crossbreed (except for PDm). An interaction between sex and crossbreed was observed for PDm (P < 0.01) and DFI100 (P = 0.05). Different covariance matrices were computed according to the batch, sex, crossbreed, or their combinations, and the similarity of matrices was evaluated using the Flury hierarchy. As covariance matrices were all different, the unit of covariance (subpopulation) corresponded to the combination of batch, sex and crossbreed. Two generic covariance matrices were compared afterwards, with (median matrix) or without (raw matrix) taking into account the size of subpopulations. The most accurate estimation of observed covariance was obtained with the median covariance matrix. The median covariance matrix can be used, in combination with average parameters obtained on-farm, to generate virtual populations of pigs that account for a realistic description of mean performances and their variability.
The reliability of reverse transcription quantitative real-time PCR (RT-qPCR) depends on normalising the mRNA abundance using carefully selected, stable reference genes. Our aim was to propose sets of reference genes for normalisation in bovine or caprine adipose tissue (AT), mammary gland, liver and muscle. All of these tissues contribute to nutrient partitioning and metabolism and, thus, to the profitability of ruminant productions (i.e. carcasses, meat and milk). In this study, eight commonly used reference genes that belong to different functional classes (CLN3, EIF3K, MRPL39, PPIA, RPLP0, TBP, TOP2B and UXT) were analysed using the geNorm procedure to determine the most stable reference genes in bovine and/or caprine tissues. Abundances and rankings of reference genes varied between tissues, species and the combination of tissues and/or species. Therefore, we proposed 29 sets of reference genes that differed depending on the tissue and/or species. As examples of the 29 sets, EIF3K, TOP2B and UXT were proposed as the most stable reference genes in bovine AT; UXT, EIF3K and RPLP0 were the most stable reference genes in bovine and caprine AT. The optimal number of reference genes for data normalisation was 3 for 27 of the proposed 29 sets. In two of the 29 sets, four to five reference genes were necessary for data normalisation when the number of studied tissues was increased. For example, UXT, EIF3K, TBP, TOP2B and CLN3 were required for data normalisation in bovine mammary gland, AT, muscle and liver. We have evaluated some of our proposed sets of reference genes for the normalisation of CD36 gene expression. Normalisation using the three most stable reference genes has revealed downregulation of CD36 gene expression in bovine mammary gland by a concentrate-based diet that is supplemented with sunflower oil and upregulation of CD36 gene expression in caprine liver by including a rapidly degradable starch in the diet. The dietary regulation of the gene expression of CD36 has been erased by normalisation with the least stable reference genes, which may result in misinterpretation of CD36 gene regulation. To conclude, our results provide valuable reference gene sets for other studies that aim to measure tissue and/or species-specific mRNA abundance in ruminants.
Real-time analysis of milk coagulation properties as performed by the AfiLab™ milk spectrometer introduces new opportunities for the dairy industry. The study evaluated the performance of the AfiLab™ in a milking parlor of a commercial farm to provide real-time analysis of milk-clotting parameters –Afi-CF for cheese manufacture and determine its repeatability in time for individual cows. The AfiLab™ in a parlor, equipped with two parallel milk lines, enables to divert the milk on-line into two bulk milk tanks (A and B). Three commercial dairy herds of 220 to 320 Israeli Holstein cows producing ∼11 500 l during 305 days were selected for the study. The Afi-CF repeatability during time was found significant (P < 0.001) for cows. The statistic model succeeded in explaining 83.5% of the variance between Afi-CF and cows, and no significant variance was found between the mean weekly repeated recordings. Days in milk and log somatic cell count (SCC) had no significant effect. Fat, protein and lactose significantly affected Afi-CF and the empirical van Slyke equation. Real-time simulations were performed for different cutoff levels of coagulation properties where the milk of high Afi-CF cutoff value was channeled to tank A and the lower into tank B. The simulations showed that milk coagulation properties of an individual cow are not uniform, as most cows contributed milk to both tanks. Proportions of the individual cow's milk in each tank depended on the selected Afi-CF cutoff. The assessment of the major causative factors of a cow producing low-quality milk for cheese production was evaluated for the group that produced the low 10% quality milk. The largest number of cows in those groups at the three farms was found to be cows with post-intramammary infection with Escherichia coli and subclinical infections with streptococci or coagulase-negative staphylococci (∼30%), although the SCC of these cows was not significantly different. Early time in lactation together with high milk yield >50 l/day, and late in lactation together with low milk yield<15 l/day and estrous (0 to 5 days) were also important influencing factors for low-quality milk. However, ∼50% of the tested variables did not explain any of the factors responsible for the cow producing milk in the low – 10% Afi-CF.
The objective of the study was to integrate economic parameters into genetic selection for sow productivity, growth performance and carcass characteristics in South African Large White pigs. Simulation models for sow productivity and terminal production systems were performed based on a hypothetical 100-sow herd, to derive economic values for the economically relevant traits. The traits included in the study were number born alive (NBA), 21-day litter size (D21LS), 21-day litter weight (D21LWT), average daily gain (ADG), feed conversion ratio (FCR), age at slaughter (AGES), dressing percentage (DRESS), lean content (LEAN) and backfat thickness (BFAT). Growth of a pig was described by the Gompertz growth function, while feed intake was derived from the nutrient requirements of pigs at the respective ages. Partial budgeting and partial differentiation of the profit function were used to derive economic values, which were defined as the change in profit per unit genetic change in a given trait. The respective economic values (ZAR) were: 61.26, 38.02, 210.15, 33.34, −21.81, −68.18, 5.78, 4.69 and −1.48. These economic values indicated the direction and emphases of selection, and were sensitive to changes in feed prices and marketing prices for carcasses and maiden gilts. Economic values for NBA, D21LS, DRESS and LEAN decreased with increasing feed prices, suggesting a point where genetic improvement would be a loss, if feed prices continued to increase. The economic values for DRESS and LEAN increased as the marketing prices for carcasses increased, while the economic value for BFAT was not sensitive to changes in all prices. Reductions in economic values can be counterbalanced by simultaneous increases in marketing prices of carcasses and maiden gilts. Economic values facilitate genetic improvement by translating it to proportionate profitability. Breeders should, however, continually recalculate economic values to place the most appropriate emphases on the respective traits during genetic selection.
Rapid and efficient methods to evaluate variables associated with fibre quality are essential in animal breeding programs and fibre trade. Near-infrared reflectance spectroscopy (NIRS) combined with multivariate analysis was evaluated to predict textile quality attributes of alpaca fibre. Raw samples of fibres taken from male and female Huacaya alpacas (n = 291) of different ages and colours were scanned and their visible–near-infrared (NIR; 400 to 2500 nm) reflectance spectra were collected and analysed. Reference analysis of the samples included mean fibre diameter (MFD), standard deviation of fibre diameter (SDFD), coefficient of variation of fibre diameter (CVFD), mean fibre curvature (MFC), standard deviation of fibre curvature (SDFC), comfort factor (CF), spinning fineness (SF) and staple length (SL). Patterns of spectral variation (loadings) were explored by principal component analysis (PCA), where the first four PC's explained 99.97% and the first PC alone 95.58% of spectral variability. Calibration models were developed by modified partial least squares regression, testing different mathematical treatments (derivative order, subtraction gap, smoothing segment) of the spectra, with or without applying spectral correction algorithms (standard normal variate and detrend). Equations were selected through one-out cross-validation according to the proportion of explained variance (R2CV), root mean square error in cross-validation (RMSECV) and the residual predictive deviation (RPD), which relates the standard deviation of the reference data to RMSECV. The best calibration models were accomplished when using the NIR region (1100 to 2500 nm) for the prediction of MFD and SF, with R2CV = 0.90 and 0.87; RMSECV = 1.01 and 1.08 μm and RPD = 3.13 and 2.73, respectively. Models for SDFD, CVFD, MFC, SDFC, CF and SL had lower predictive quality with R2CV < 0.65 and RPD < 1.5. External validation performed for MFD and SF on 91 samples was slightly poorer than cross-validation, with R2 of 0.86 and 0.82, and standard error of prediction of 1.21 and 1.33 μm, for MFD and SF, respectively. It is concluded that NIRS can be used as an effective technique to select alpacas according to some important textile quality traits such as MFD and SF.
Grazing pastures to low post-grazing sward heights (PGSH) is a strategy to maximise the quantity of grazed grass in the diet of dairy cows within temperate grass-based systems. Within Irish spring-calving systems, it was hypothesised that grazing swards to very low PGSH would increase herbage availability during early lactation but would reduce dairy cow performance, the effect of which would persist in subsequent lactation performance when compared with cows grazing to a higher PGSH. Seventy-two Holstein–Friesian dairy cows (mean calving date, 12 February) were randomly assigned post-calving across two PGSH treatments (n = 36): 2.7 cm (severe; S1) and 3.5 cm (moderate; M1), which were applied from 10 February to 18 April (period 1; P1). This was followed by a carryover period (period 2; P2) during which cows were randomly reassigned within their P1 treatment across two further PGSH (n = 18): 3.5 cm (severe, SS and MS) and 4.5 cm (moderate, SM and MM) until 30 October. Decreasing PGSH from 3.5 to 2.7 cm significantly decreased milk (−2.3 kg/cow per day), protein (−95 g/day), fat (−143 g/day) and lactose (−109 g/day) yields, milk protein (−1.2 g/kg) and fat (−2.2 g/kg) concentrations and grass dry matter intake (GDMI; −1.7 kg dry matter/cow per day). The severe PGSH was associated with a lower bodyweight (BW) at the end of P1. There was no carryover effect of P1 PGSH on subsequent milk or milk solids yields in P2, but PGSH had a significant carryover effect on milk fat and lactose concentrations. Animals severely restricted at pasture in early spring had a higher BW and slightly higher body condition score in later lactation when compared with M1 animals. During P2, increasing PGSH from 3.5 to 4.5 cm increased milk and milk solids yield as a result of greater GDMI and resulted in higher mean BW and end BW. This study indicates that following a 10-week period of feed restriction, subsequent dairy cow cumulative milk production is unaffected. However, the substantial loss in milk solid yield that occurred during the period of restriction is not recovered.
The objective of this work was to investigate the expression of heat shock protein 70 (HSP70) by Western blot (WB) in swine liver. Subsequently, the study aimed to apply this method to two experimental groups of heavy pigs raised in different confinement systems: intensive/indoor (Group A) and extensive/outdoor (Group B). Thirty-six crossbred commercial heavy pigs were divided as follows: Group A (eight castrated males and eight females) was equally distributed into two single-sex indoor pens (1.02 m2/pig); Group B (11 castrated males and nine females) was kept in one single (partially grassy and partially wooded) open area of about 6000 m2. Group A was slaughtered at 41 weeks of age (170 ± 9 kg) and Group B at 48 weeks of age (172 ± 13 kg). At the abattoir the livers of all the animals were collected and analyzed by WB assay in order to quantify the levels of HSP70. Moreover, a further liver sample was taken from the same animals in order to investigate the cellular localization of HSP70 by immunohistochemistry (IHC). The interaction between sex and group resulted statistically significant (P = 0.001). When stratified by sex, Group A showed significantly higher HSP70 values compared with Group B for both male and female subjects (P < 0.001). Stratifying by group, males showed significantly higher HSP70 values than females in Group A (P < 0.001), whereas no statistical differences were observed between sexes for Group B (P = 0.653). The IHC results evidenced cytoplasmic immunoreactivity in a granular pattern in both groups. The different expression pattern observed by WB could prove to be a useful tool in the assessment of pig health and welfare.
Energy digestibility in the growing pig increases with BW increase and may differ between breeds of pigs or between lines selected on criteria other than digestion. However, little is known about the variability in energy digestibility within a line or a breed of pigs, especially when fibrous diets are fed. For this purpose, 20 Large White castrated male growing pigs originating from four boars (five per boar), and three to four sows per boar, were fed a high dietary fibre (DF) diet (18% NDF) and measured over 10 consecutive weeks (30 to 95 kg BW range) for their apparent faecal energy, nitrogen and organic matter digestibility. Each week, faeces were totally collected over 5 days and the feed dry matter intake over the same days was recorded. All digestibility coefficients increased regularly (P < 0.001) over the experimental periods or with BW increase (+0.6 point/10 kg BW increase for energy); this rate of increase was not affected by boar origin (no interaction; P > 0.05). The digestibility coefficients were affected by boar origin (P < 0.005 for energy), with about 2 points for energy between the extremes (81.7% v. 79.5%), and there was no marked interaction between boar origin and period. These preliminary results suggest the possibility of selecting growing pigs for an increased digestive efficiency when fed high DF diets.
To simulate the consequences of management in dairy herds, the use of individual-based herd models is very useful and has become common. Reproduction is a key driver of milk production and herd dynamics, whose influence has been magnified by the decrease in reproductive performance over the last decades. Moreover, feeding management influences milk yield (MY) and body reserves, which in turn influence reproductive performance. Therefore, our objective was to build an up-to-date animal reproduction model sensitive to both MY and body condition score (BCS). A dynamic and stochastic individual reproduction model was built mainly from data of a single recent long-term experiment. This model covers the whole reproductive process and is composed of a succession of discrete stochastic events, mainly calving, ovulations, conception and embryonic loss. Each reproductive step is sensitive to MY or BCS levels or changes. The model takes into account recent evolutions of reproductive performance, particularly concerning calving-to-first ovulation interval, cyclicity (normal cycle length, prevalence of prolonged luteal phase), oestrus expression and pregnancy (conception, early and late embryonic loss). A sensitivity analysis of the model to MY and BCS at calving was performed. The simulated performance was compared with observed data from the database used to build the model and from the bibliography to validate the model. Despite comprising a whole series of reproductive steps, the model made it possible to simulate realistic global reproduction outputs. It was able to well simulate the overall reproductive performance observed in farms in terms of both success rate (recalving rate) and reproduction delays (calving interval). This model has the purpose to be integrated in herd simulation models to usefully test the impact of management strategies on herd reproductive performance, and thus on calving patterns and culling rates.
Single nucleotide polymorphisms (SNPs) are the most widespread source of variation in genomes. While the very large number of SNPs allows for a very precise description of genetic variation, it impedes data processing and significantly increases analysis time. Many of the SNPs located close to each other frequently carry the same or similar information. This problem can be solved by selecting the most informative SNPs (tagSNPs) using linkage disequilibrium information by identifying a set of tagSNPs representative for a chromosome fragment. The goal of this study is to check whether the genetic structure of a population, expressed by relationship and inbreeding coefficients, affects tagSNP selection. Six subsets of 450 bulls are selected out of the 1228 Polish Holstein-Friesian bulls genotyped by the Illumina BovineSNP50 Bead Chip. TagSNPs are selected for each of the subsets, as well as for the whole data set. The average reduction of the SNP number is 77.2% and is very similar in each sub-population. Differences in tagSNP selection between sub-populations are small. On average, 93.88% of the tagSNPs overlap between subsets. The study showed that differences in the genetic structure of the reference population have little influence on tagSNP selection.
Thirty various pelleted diets were given to broilers (8/diet) for in vivo measurements of dietary metabolisable energy (ME) value and digestibilities of proteins, lipids, starch and sugars from day 27 to day 31, with ad libitum feeding and total collection of excreta. Water excretion was also measured. Amino acid formulation of diets was done on the basis of ratios to crude proteins. Mean in vivo apparent ME values corrected to zero nitrogen retention (AMEn) were always lower than the AMEn values calculated for adult cockerels using predicting equations from literature based on the chemical analyses of diets. The difference between mean in vivo AMEn values and these calculated AMEn values increased linearly with increasing amount of wheat in diets (P = 0.0001). Mean digestibilities of proteins, lipids and starch were negatively related to wheat introduction (P = 0.0001). The correlations between mean in vivo AMEn values and diet analytical parameters were the highest with fibre-related parameters, such as water-insoluble cell-walls (WICW) (r = −0.91) or Real Applied Viscosity (RAV) (r = −0.77). Thirteen multiple regression equations relating mean in vivo AMEn values to dietary analytical data were calculated, with R2 values ranging from 0.859 to 0.966 (P = 0.0001). The highest R2 values were obtained when the RAV parameter was included in independent variables. The direct regression equations obtained with available components (proteins, lipids, starch, sucrose and oligosaccharides) and the indirect regression equations obtained with WICW and ash parameters showed similar R2 values. Direct or indirect theoretical equations predicting AMEn values were established using the overall mean in vivo digestibility values. The principle of indirect equations was based on the assumption that WICW and ashes act as diluters. Addition of RAV or wheat content in variables improved the accuracy of theoretical equations. Efficiencies of theoretical equations for predicting AMEn values were almost the same as those of multiple regression equations. Water excretion was expressed either as the water content of excreta (EWC), the ratio of water excretion to feed intake (WIR) or the residual value from the regression equation relating water excretion to feed intake (RWE). The best regression predicting EWC was based on sucrose, fermentable sugars (lactose + oligosaccharides) and chloride variables, with positive coefficients. The best equations predicting WIR or RWE contained the sugar and chloride variables, with positive coefficients. Other variables appearing in these equations were AMEn or starch with negative coefficients, WICW, ‘cell-wall-retained water’, RAV or potassium with positive coefficients.
In experiments based on ruminants’ individual dry matter intake (DMI) assessment, several external markers can be used to estimate faecal output when total faeces collection is not possible. However, preparation of the markers to be administered and analytical procedures used for marker content determination are time-consuming thus strongly limiting the number of animals involved in the experiments. In this paper, polyethylene glycol (PEG, molecular weight 6000 da) was tested as a faecal marker. Four trials were conducted on dry, non-lactating ewes kept in digestibility crates that allowed individual measurements. The overall experiment was designed to assess the major factors that could lessen the effectiveness of this method, assuming that the use of grab samples of faeces is sufficient. Trial 1 was designed to test two levels of PEG (20 and 40 g/day) administered in two equal amounts. Trial 2 was designed to test the effect of either a single morning (0800 h) dose (20 g/day) or a twice daily administration (0800 and 1600 h) of the same fractionated dose. Trial 3 was designed to test a 20 g/day dose of PEG administered once daily to ewes fed with hays of different qualities: medium (MH) and low (LH). In trial 4, a lower dose of PEG (10 g/day) was administered once a day to ewes fed with fresh oat–vetch forage. It was demonstrated that PEG could be precisely estimated (average prediction error = 3.47 g/kg) with near-infrared reflectance spectroscopy (NIRS). On the basis of the four trials, it has been proved that PEG administration (20 and 40 g/day) did not significantly affect the DMI of ewes fed dry diets (trials 1, 2 and 3), whereas there was an unexpected increase of DMI for ewes fed exclusively with green feed (trial 4) without DM digestibility modification. Providing PEG as a single dose (0800 h) or split into two equal parts (0800 and 1600 h) did not alter the estimated DMI. Considering the interest of grab sampling, there were clear variations of PEG in faeces with higher concentrations observed at 0800 and 1600 h and lower concentrations at 1400 h. Consequently, with PEG (measured with NIRS) administered once and using the grab sampling procedure (morning collection), it is possible to estimate the DMI of dry feeds with good accuracy. For green feeds, more research is needed as the estimated results are still highly variable.
Oxidative stress (OS) plays a key role in the initiation or progression of numerous diseases, and dairy cows undergo OS at the transition period. However, discrepancies between methodologies make it difficult to make comparisons between studies, and therefore research on this topic may not be implemented in farms. This study aims to test under field conditions the use of an oxidative stress index (OSi) as a combined measurement through a ratio between pro-oxidants and antioxidants throughout the transition period in dairy farms. Serum samples of high-yielding dairy cows were taken, and markers of oxidative damage and antioxidant capacity were measured in four different production stages: (i) late lactation (LL; −2 to −1 months); (ii) prepartum (PrP; −1 month until parturition); (iii) postpartum (PsP; delivery to +1 month); and (iv) peak of lactation (PkL; +1 to +2.5 months). Values were compared between production stages and against a metabolic baseline status (CTR, 4th to 5th month of gestation). To the best of our knowledge, this is the first report in the literature that discusses the values of these oxidative stress biomarkers (and the OS index) for cows with low metabolic demands, as to date most research in this area has focused on the transition period. With the joint evaluation through the OSi, differences were found that were not present with the separate evaluation of pro-oxidants or antioxidants, thus supporting our hypothesis that the OSi indicates more accurately the oxidative status of the animals. It was also confirmed that dairy cows undergo OS after parturition, and that antioxidant supplementation from 1 month before parturition until the peak of lactation may be needed to reduce the risk of OS.
The main objective of this study was to investigate the relationship between partitioning and isotopic fractionation of nitrogen (N) in sheep consuming diets with varying ratios of N to water-soluble carbohydrate (WSC). Six non-lactating sheep were offered a constant dry matter (DM) allowance with one of three ratios of dietary N/WSC, achieved by adding sucrose and urea to lucerne pellets. A replicated 3 dietary treatments (Low, Medium and High N/WSC) × 3 (collection periods) and a Latin square design was used, with two sheep assigned to each treatment in each period. Feed, faeces, urine, plasma, wool, muscle and liver samples were collected and analysed for 15N concentration. Nitrogen intake and outputs in faeces and urine were measured for each sheep using 6-day total collections. Blood urea N (BUN) and urinary excretion of purine derivative were also measured. Treatment effects were tested using general ANOVA; the relationships between measured variables were analysed by linear regression. BUN and N intake increased by 46% and 35%, respectively, when N/WSC increased 2.5-fold. However, no indication of change in microbial protein synthesis was detected. Results indicated effects of dietary treatments on urinary N/faecal N, faecal N/N intake and retained N/N intake. In addition, the linear relationships between plasma δ15N and urinary N/N intake and muscle δ15N and retained N/N intake based on individual measurements showed the potential of using N isotopic fractionation as an easy-to-use indicator of N partitioning when N supply exceeds that required to match energy supply in the diet.
An in vivo model, combining a low developmental competence embryo (demi-embryo) and a high-fertility recipient (virgin dairy heifer) was used to evaluate the effects of treatment with human chorionic gonadotropin (hCG) and carprofen at embryo transfer (ET) on plasma progesterone (P4) concentrations of recipients and on embryonic growth and survival. Embryos were bisected and each demi-embryo was transferred to a recipient on Day 7 of the estrous cycle. At ET, heifers (n = 163) were randomly allocated to treatment with hCG (2500 IU im), carprofen (500 mg iv), hCG plus carprofen or to untreated controls. Plasma P4 concentrations were measured on Days 0, 7, 14 and 21 of all recipients plus on Days 28, 42 and 63 of pregnant recipients. Pregnancy was presumed to be present in recipients with luteal plasma P4 concentrations until Day 21 and confirmed by using transrectal ultrasonography on Days 28, 42 and 63. Embryonic measurements (crown–rump length and width) were obtained on Day 42. Treatment with hCG induced formation of secondary corpora lutea (CL) in 97% of heifers and increased (P < 0.01) mean plasma P4 concentrations of non-pregnant recipients on Day 14 and of pregnant heifers on Days 14 to 63. This was associated to a significant decrease in early embryonic mortality. In contrast, subsequent embryonic losses resulted in a non-significant numerical increase by 8% of pregnancies maintained to Day 63. Therefore, treatment with hCG significantly rescued embryos through the maternal recognition of pregnancy window but was not able to support development thereafter. Treatment with carprofen at ET had no significant effects on plasma P4 concentrations and rate of embryo mortality. Treatment with hCG plus carprofen at ET induced formation of secondary CL in 90% of heifers but decreased the luteotrophic effect of hCG, resulting in no effect on embryo survival. Low developmental competence embryos showed an intrinsic deficiency in overcoming the maternal recognition of pregnancy challenge and in proceeding to further development until Day 28 of pregnancy, whereas mortality beyond this point was residual. Results on pregnancy rates should be confirmed in further experiments involving a larger sample size.