We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Radiation from astronomical objects generally shows some degree of polarization. Although this polarized radiation is usually only a small fraction of the total radiation, it often carries a wealth of information on the physical state and geometry of the emitting object and intervening material. Measurement of this polarized radiation is central to much modern astrophysical research. This handy volume provides a clear, comprehensive and concise introduction to astronomical polarimetry at all wavelengths. Starting from first principles and a simple physical picture of polarized radiation, the reader is introduced to all the key topics, including Stokes parameters, applications of polarimetry in astronomy, polarization algebra, polarization errors and calibration methods, and a selection of instruments (from radio to X-ray). The book is rounded off with a number of useful case studies, a collection of exercises, an extensive list of further reading and an informative index. This review of all aspects of astronomical polarization provides both an essential introduction for graduate students, and a valuable reference for practising astronomers.
Emission lines provide a powerful tool to study the physical properties and chemical compositions of astrophysical objects in the Universe, from the first stars to objects in our galaxy. The analysis of emission lines allows us to estimate the star formation rate and initial mass function of ionizing stellar populations, and the properties of active galactic nuclei. This book presents lectures from the eighteenth Winter School of the Canary Islands Astrophysics Institute (IAC), devoted to emission lines and the astrophysical objects that produce them. Written by prestigious researchers and experienced observers, it covers the formation of emission lines and the different sources that produce them. It shows how emission lines in different wavelengths, from ultraviolet to near infrared, can provide essential information on understanding the formation and evolution of astrophysical objects. It also includes practical tutorials for data reduction, making this a valuable reference for researchers and graduate students.
What can emission lines tell us about an astrophysical object? A workshop at the Space Telescope Science Institute was dedicated to address just this question – for a host of objects (including planetary nebulae and active galactic nuclei) across a broad range of wavelengths (from the infrared through to gamma-rays). Thirteen review articles from internationally renowned experts are presented in this volume. They provide an edited and coherent overview of the latest technical data, techniques in and applications of the study of emission lines from a variety of objects. Chapters include the theory of radiative transfer, photoionising shocks, and emission lines from stellar winds, as well as useful summaries of abundance determinations, atomic data, and diagnostics for IR, UV, gamma-ray and molecular lines. Together these review articles provide an overview of the analysis of emission lines. They summarise current knowledge, highlight outstanding problems and provide focus for fruitful future research. In this way they provide an excellent introduction for graduate students and reference for professionals.
Adaptive optics is a powerful new technique used to sharpen telescope images blurred by the Earth's atmosphere. This authoritative book is the first dedicated to the use of adaptive optics in astronomy. Mainly developed for defence applications, the technique of adaptive optics has only recently been introduced in astronomy. Already it has allowed ground-based telescopes to produce images with sharpness rivalling those from the Hubble Space Telescope. The technique is expected to revolutionise the future of ground-based optical astronomy. Written by an international team of experts who have pioneered the development of the field, this timely volume provides both a rigorous introduction to the technique and a comprehensive review of current and future systems. It is set to become the standard reference for graduate students, researchers and optical engineers in astronomy and other areas of science where adaptive optics is finding exciting new applications.
Detection of Light provides a comprehensive overview of the important approaches to photon detection from the ultraviolet to the submillimeter spectral regions. This expanded and fully updated second edition discusses recently introduced types of detector such as superconducting tunnel junctions, hot electron bolometer mixers, and fully depleted CCDs, and also includes historically important devices such as photographic plates. Material from many disciplines is combined into a comprehensive and unified treatment of the detection of light, with emphasis on the underlying physical principles. Chapters have been thoroughly reorganised to make the book easier to use, and each includes problems with solutions as appropriate. This self-contained text assumes only an undergraduate level of physics, and develops understanding as it is needed. It is suitable for advanced undergraduate and graduate students, and will provide a valuable reference for professionals in astronomy, engineering and physics.
High-performance CCD cameras have opened up an exciting new window on the Universe for amateur astronomers. This book provides a complete, self-contained guide to choosing and using CCD cameras. We start with a no-nonsense introduction to how a CCD camera works and just what determines its performance. We are then shown how to use a CCD camera and calibrate accurately the images we obtain. A clear review is then provided of the software available for visualising, analysing and processing digital images. Finally, we are guided through a series of key areas in astronomy where we can make the best use of our CCD cameras. This handy volume is packed with practical tips. It provides a clear introduction to CCD astronomy for novices and an indispensable reference for more experienced amateur astronomers.
Infrared astronomy has been revolutionised in the last few years by the advent of large, sensitive, infrared arrays, and the success of several infrared satellites. This handbook provides a clear, concise and accessible reference on all aspects of infrared astronomy. Throughout, the emphasis is on fundamental concepts, practical considerations and useful data. Starting with a review of the basic infrared emission mechanisms, we are shown how the earth's atmosphere affects and limits observations from ground-based telescopes. The important systematics of photometric accuracy are treated in detail. Spectroscopy - both stellar and otherwise - is explained, and illustrated with useful examples. An important chapter is devoted to dust, which plays such a central role. Finally, the technical background to infrared instrumentation is covered. This volume provides both an essential introduction for graduate students making infrared observations or reducing infrared data for the first time, and a convenient reference for more experienced researchers.
A new era in solar spectroscopy was launched in the late 1860s when a series of solar eclipses provided an opportunity to study the solar chromosphere. This is the hot tenuous layer lying above the photosphere, which is the region of the Sun that emits the vast proportion of the visible light. At the time of a total solar eclipse, it was well known by the 1860s that the light from the thin chromospheric layer (with a height of ∼ 10 to 12 arc seconds or 8000 to 10 000 km) became briefly visible. Moreover, the solar prominences are large structures of chromospheric material extending out from the limb, often a minute of arc or more in height. They too were seen at times of eclipse, and the question of the physical conditions in the chromosphere and prominences arose. The spectroscope was the natural tool to settle the issue. If they were comprised of hot low density gas, then bright emission lines would be expected, as William Huggins pointed out, and hence they should have spectra similar to those of the gaseous nebulae, such as the Orion nebula. Huggins also believed that if bright lines were present, then perhaps they could be observed with suitable glass filters to isolate the line radiation, even outside of eclipse, but attempts to do so did not come to fruition.
Few astronomers would dispute the pivotal rôle that the astronomical spectrograph has played in the development of astrophysics. Of all astronomical instruments other than the telescope itself, none other can compete with the spectrograph for the range of new astronomical knowledge it has provided, and for the insights it has given on the physical nature of the celestial bodies in the Universe. Together with the predecessor of the spectrograph, the visual spectroscope, these instruments have revolutionized our knowledge of the Sun, the planets, stars, gaseous nebulae, the interstellar medium, galaxies and quasars.
Without the spectrograph, we would know nothing of solar or stellar composition, nothing about stellar rotation rates, and much less than we do on stellar space motions and binary stars. Even the real nature of the stars themselves would be a matter of conjecture and debate. And we would have rudimentary knowledge of the conditions prevailing in gaseous and planetary nebulae and of the nature of external galaxies beyond the Milky Way. There would be no Hubble's law, and hence no direct knowledge of the expansion of the Universe other than indirect inference based on Olbers' paradox or on theoretical prediction. Quasars would not be easily distinguished from stars, and the study of radio galaxies and active galactic nuclei would be limited to their morphological properties in optical or radio images. In short, optical spectrographs have underpinned almost every branch of astrophysics in the past century and a half.
A new era in solar spectroscopy was launched in the late 1860s when a series of solar eclipses provided an opportunity to study the solar chromosphere. This is the hot tenuous layer lying above the photosphere, which is the region of the Sun that emits the vast proportion of the visible light. At the time of a total solar eclipse, it was well known by the 1860s that the light from the thin chromospheric layer (with a height of ∼ 10 to 12 arc seconds or 8000 to 10 000 km) became briefly visible. Moreover, the solar prominences are large structures of chromospheric material extending out from the limb, often a minute of arc or more in height. They too were seen at times of eclipse, and the question of the physical conditions in the chromosphere and prominences arose. The spectroscope was the natural tool to settle the issue. If they were comprised of hot low density gas, then bright emission lines would be expected, as William Huggins pointed out, and hence they should have spectra similar to those of the gaseous nebulae, such as the Orion nebula. Huggins also believed that if bright lines were present, then perhaps they could be observed with suitable glass filters to isolate the line radiation, even outside of eclipse, but attempts to do so did not come to fruition.
Henry Draper and William Huggins, pioneers in ultraviolet stellar spectroscopy
Observational studies of the near ultraviolet region of stellar spectra have a long history, which goes back to the early days of stellar spectrum photography. The very first spectrum ever recorded by photography was by Henry Draper in 1872. He used his 28-inch reflector and a spectrograph with a quartz prism, and the then relatively new innovation of a dry emulsion glass plate. He noted:
In the photographs of the spectrum of Vega there are eleven lines, only two of which are certainly accounted for, two more may be calcium, the remaining seven, though bearing a most suspicious resemblance to the hydrogen lines in their general characters, are as yet not identified.
The key to Draper's success was in part his use of the new dry plates, which were so much more convenient than the wet collodion plates used previously in astronomical photography. But also his use of a silvered-glass reflecting telescope and a spectrograph with a quartz prism allowed him not only to go below the approximately 400 nm wavelength limit of the human eye, but below the approximately 380 nm limit for the transmission of flint glass used in the lenses of achromatic refractors.
A spectrograph is an instrument that receives light from a source, disperses the light according to its wavelength into a spectrum, and focusses the spectrum onto a detector, which records the spectral image. In the astronomical case the source might be a star or galaxy, and the light will first be collected by a telescope. Many telescopes produce an image of the source on a spectrograph slit (although slitless objective prism instruments are also possible). After the slit, a collimator renders the rays almost parallel, and a dispersing element, usually a grating or a prism, sends photons of different wavelengths into different directions. A camera then records a continuous succession of monochromatic slit images, each displaced in the dispersion direction according to its wavelength. This array of slit images constitutes the spectrum.
The simplest possible slit spectrograph (Fig. 2.1) therefore comprises a slit, a collimator (either a mirror or a lens system), a dispersing element (typically a grating or a prism) and a camera (again a mirror or lens system) and finally a detector (perhaps a charge-coupled device or CCD, perhaps a photographic plate, but in early instruments it was the human eye in conjunction with an eyepiece).
INTRODUCTION TO SPECTROGRAPHS OF THE LATE TWENTIETH CENTURY
In this chapter, ten outstanding spectrographs which had their first light in the late twentieth or early twenty-first centuries are presented. The section covers five high resolution instruments, four at low resolution and one spectrograph with multiple capabilities that includes low, medium and high resolution modes. All were commissioned between 1984 and 2003 and they are presented in chronological order of their entry into service.
The choice of ten representative spectrographs from the several dozen commissioned over this two decade period was a matter of some difficulty. The final choice was my own personal one. I wanted to show that spectrograph design has become a pursuit of great innovation, ingenuity and also complexity, at times verging towards a creative art-form involving cutting edge optical technology. In this period, huge developments were made in the use of optical fibres, larger and improved efficiency CCD detectors, the production of large mosaic gratings, the development of grisms and volume phase holographic gratings, the design and manufacture of multi-element dioptric cameras with specialized antireflection coatings, high reflection coatings on mirrors, and the extension of the wavelength range both down into the near ultraviolet at the atmospheric limit and also to the far red near one micrometre.