We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this year the cube of the Transit Circle was pierced, to permit reciprocal observations of the Collimators without raising the instrument. This involved the construction of improved Collimators, which formed the subject of a special Address to the Members of the Board of Visitors on Oct. 21st 1865.—From the Report to the Visitors it appears that “On May 23rd 1865, a thunderstorm of great violence passed very close to the Observatory. After one flash of lightning, I was convinced that the principal building was struck. Several galvanometers in the Magnetic Basement were destroyed. Lately it has been remarked that one of the old chimneys of the principal building had been dislocated and slightly twisted, at a place where it was surrounded by an iron stayband led from the Telegraph Pole which was planted upon the leads of the Octagon Room.”—“On consideration of the serious interruptions to which we have several times been exposed from the destruction of our open-air Park-wires (through snow-storms and gales), I have made an arrangement for leading the whole of our wires in underground pipes as far as the Greenwich Railway Station.”—“The Committee of the House of Commons, to whom the Greenwich and Woolwich Line of the South Eastern Railway was referred, finally assented to the adoption of a line which I indicated, passing between the buildings of the Hospital Schools and the public road to Woolwich.”—“The Galvanic Chronometer attached to the S. E. Equatoreal often gave us a great deal of trouble. At last I determined, on the proposal of Mr Ellis, to attempt an extension of Mr R. L. Jones's regulating principle.
“On Nov. 7th I proposed a change in the form of Estimates for the Observatory. The original astronomical part was provided by the Admiralty, and the new magnetical and meteorological part was provided by the Treasury: and the whole Estimates and Accounts of the Observatory never appeared in one public paper. I proposed that the whole should be placed on the Navy Estimates, but the Admiralty refused. I repeated this in subsequent years, with no success. Meantime I always sent to the Admiralty a duplicate of my Treasury Estimate with the proper Admiralty Estimate.—Stephenson's Railway through the lower part of the Park, in tunnel about 850 feet from the Observatory, was again brought forward. On Feb. 20th it was put before me by the Government, and on March 9th I made experiments at Kensal Green, specially on the effect of a tunnel: which I found to be considerable in suppressing the tremors. On May 6th I made my Report, generally favourable, supposing the railway to be in tunnel. On May 13th I, with Mr Stephenson, had an interview at the Admiralty with Lord Ellenborough and Sir George Cockburn. The Earl appeared willing to relax in his scruples about allowing a railway through the Park, when Sir George Cockburn made a most solemn protest against it, on the ground of danger to an institution of such importance as the Observatory. I have no doubt that this protest of Sir George Cockburn's really determined the Government.
HISTORY OF HIS LIFE AFTER HIS RESIGNATION OF OFFICE.
On the 16th of August 1881 Airy left the Observatory which had been his residence for nearly 46 years, and removed to the White House. Whatever his feelings may have been at the severing of his old associations he carefully kept them to himself, and entered upon his new life with the cheerful composure and steadiness of temper which he possessed in a remarkable degree. He was now more than 80 years old, and the cares of office had begun to weigh heavily upon him: the long-continued drag of the Transit of Venus work had wearied him, and he was anxious to carry on and if possible complete his Numerical Lunar Theory, the great work which for some years had occupied much of his time and attention. His mental powers were still vigorous, and his energy but little impaired: his strong constitution, his regular habits of life, the systematic relief which he obtained by short holiday expeditions whenever he found himself worn with work, and his keen interest in history, poetry, classics, antiquities, engineering, and other subjects not immediately connected with his profession, had combined to produce this result. And in leaving office, he had no idea of leaving off work; his resignation of office merely meant for him a change of work.
“I attended a meeting of the Board of Longitude on Apr. 3rd. And again on June 4th; this was the last meeting: Sheepshanks had previously given me private information of the certainty of its dissolution.—On Apr. 4th I visited Mr Herschel at Slough, where one evening I saw Saturn with his 20-foot telescope, the best view of it that I have ever had.—In June I attended the Greenwich Observatory Visitation.— Before my election (as Plumian Professor) there are various schemes on my quires for computation of transit corrections, &c. After Apr. 15th there are corrections for deficient wires, inequality of pivots, &c. And I began a book of proposed regulations for observations. In this are plans for groups of stars for R.A. (the Transit Instrument being the only one finished): order of preference of classes of observations: no reductions to be made after dinner, or on Sunday: no loose papers: observations to be stopped if reductions are two months in arrear: stars selected for parallax.—The reduction of transits begins on Apr. 15th. On May 15th Mr Pond sent me some moon-transits to aid in determining my longitude.—Dr Young, in a letter to me of May 7th, enquires whether I will accept a free admission to the Royal Society, which I declined. On May 9th I was elected to the Astronomical Society.—Towards the end of the year I observed Encke's Comet: and determined the latitude of the Observatory with Sheepshanks's repeating circle.—On my papers I find a sketch of an Article on the Figure of the Earth for the Encyclopaedia Metropolitana.
The history of Airy's life, and especially the history of his life's work, is given in the chapters that follow. But it is felt that the present Memoir would be incomplete without a reference to those personal characteristics upon which the work of his life hinged and which can only be very faintly gathered from his Autobiography.
He was of medium stature and not powerfully built: as he advanced in years he stooped a good deal. His hands were large-boned and well-formed. His constitution was remarkably sound. At no period in his life does he seem to have taken the least interest in athletic sports or competitions, but he was a very active pedestrian and could endure a great deal of fatigue. He was by no means wanting in physical courage, and on various occasions, especially in boating expeditions, he ran considerable risks. In debate and controversy he had great self-reliance, and was absolutely fearless. His eye-sight was peculiar, and required correction by spectacles the lenses of which were ground to peculiar curves according to formulae which he himself investigated : with these spectacles he saw extremely well, and he commonly carried three pairs, adapted to different distances : he took great interest in the changes that took place in his eye-sight, and wrote several Papers on the subject. In his later years he became somewhat deaf, but not to the extent of serious personal inconvenience.
The life of Airy was essentially that of a hard-working, business man, and differed from that of other hard-working people only in the quality and variety of his work. It was not an exciting life, but it was full of interest, and his work brought him into close relations with many scientific men, and with many men high in the State. His real business life commenced after he became Astronomer Royal, and from that time forward, during the 46 years that he remained in office, he was so entirely wrapped up in the duties of his post that the history of the Observatory is the history of his life. For writing his business life there is abundant material, for he preserved all his correspondence, and the chief sources of information are as follows:
(1) His Autobiography.
(2) His Annual Reports to the Board of Visitors.
(3) His printed Papers entitled “Papers by G. B. Airy.”
(4) His miscellaneous private correspondence.
(5) His letters to his wife.
(6) His business correspondence.
(1) His Autobiography, after the time that he became Astronomer Royal, is, as might be expected, mainly a record of the scientific work carried on at the Greenwich Observatory: but by no means exclusively so. About the time when he took charge of the Observatory there was an immense development of astronomical enterprise: observatories were springing up in all directions, and the Astronomer Royal was expected to advise upon all of the British and Colonial Observatories.
“On Jan. 30th, 1823, I returned to Cambridge. I had already heard that I had gained the 1st Smith's Prize, and one of the first notifications to me on my return was that the Walker's good-conduct prize of £10 was awarded to me.
“I remember that my return was not very pleasant, for our table in hall was half occupied by a set of irregular men who had lost terms and were obliged to reside somewhat longer in order to receive the B.A. degree. But at the time of my completing the B.A. degree (which is not till some weeks after the examination and admission) I with the other complete bachelors was duly invited to the table of the B.A. scholars, and that annoyance ended.
“The liberation from undergraduate study left me at liberty generally to pursue my own course (except so far as it was influenced by the preparation for fellowship examination), and also left me at liberty to earn more money, in the way usual with the graduates, by taking undergraduate pupils. Mr Peacock recommended me to take only four, which occupied me four hours every day, and for each of them I received 20 guineas each term. My first pupils, for the Lent and Easter terms, were Williamson (afterwards Head Master of Westminster School), James Parker (afterwards Q.C. and Vice-Chancellor), Bissett, and Clinton of Caius. To all these I had been engaged before taking my B.A. degree.
George Biddell Airy was born at Alnwick in Northumberland on July 27th 1801. His father was William Airy of Luddington in Lincolnshire, the descendant of a long line of Airys who have been traced back with a very high degree of probability to a family of that name which was settled at Kentmere in Westmorland in the 14th century. A branch of this family migrated to Pontefract in Yorkshire, where they seem to have prospered for many years, but they were involved in the consequences of the Civil Wars, and one member of the family retired to Ousefleet in Yorkshire. His grandson removed to Luddington in Lincolnshire, where his descendants for several generations pursued the calling of small farmers. George Biddell Airy's mother, Ann Airy, was the daughter of George Biddell, a well-to-do farmer in Suffolk.
William Airy, the father of George Biddell Airy, was a man of great activity and strength, and of prudent and steady character. When a young man he became foreman on a farm in the neighbourhood of Luddington, and laid by his earnings in summer in order to educate himself in winter. For a person in his rank, his education was unusually good, in matters of science and in English literature. But at the age of 24 he grew tired of country labour, and obtained a post in the Excise. After serving in various Collections he was appointed Collector of the Northumberland Collection on the 15th August 1800, and during his service there his eldest son George Biddell Airy was born.
“At the door from the Front Court to the staircase of the Octagon Room (the original entrance to the Observatory as erected by Sir Christopher Wren), a small porch-shelter has been often desired. I proposed to fix there a fan-roof of quadrantal form, covering the upper flat stone of the external steps.—On a critical examination of the micrometer-screws of the Transit Circle it was found that the corrections, which range from — 1.38″ to + 0.76″, indicate considerable wear in the screws; and it was found that as much as one-hundreth part of an inch had been worn away from some of the threads. The old screws were consequently discarded, and new ones were made by Mr Simms.—The adjustment of the Spectroscope has occupied a great deal of attention. There was astigmatism of the prisms; and false light reflected from the base of the prisms, causing loss both of light and of definition. The latter defect was corrected by altering the angles, and then astigmatism was corrected by a cylindrical lens near the slit. The definition in both planes was then found to be perfect.—The number of small planets has now become so great, and the interest of establishing the elements of all their orbits so small,—while at the same time the light of all those lately discovered is very faint, and the difficulty and doubt of observation greatly increased,—that I have begun to think seriously of limiting future observations to a small number of these objects.
“Through the last quarter of 1835 I had kept everything going on at the Greenwich Observatory in the same manner in which Mr Pond had carried it on. With the beginning of 1836 my new* system began. I had already prepared 30 printed skeleton forms (a system totally unknown to Mr Pond) which were now brought into use. And, having seen the utility of the Copying Press in merchants’ offices, I procured one. From this time my correspondence, public and private, is exceedingly perfect.
“At this time the dwelling house was still unconnected with the Observatory. It had no staircase to the Octagon Room. Four new rooms had been built for me on the western side of the dwelling house, but they were not yet habitable. The North-east Dome ground floor was still a passage room. The North Terrace was the official passage to the North-west Dome, where there was a miserable Equatoreal, and to the 25-foot Zenith Tube (in a square tower like a steeple, which connected the N.W. Dome with Flamsteed's house). The southern boundary of the garden ran down a hollow which divides the peninsula from the site of the present Magnetic Observatory, in such a manner that the principal part of the garden was fully exposed to the public. The Computing Room was a most pitiful little room. There was so little room for me that I transported the principal table to a room in my house, where I conducted much of my own official business. A large useless reflecting telescope (Ramage's), on the plan and nearly of the size of Sir W. Herschel's principal telescope, encumbered the centre of the Front Court.
With the instinct of order which formed one of his chief characteristics Airy carefully preserved a copy of every printed Paper of his own composition. These were regularly bound in large quarto volumes, and they are in themselves a striking proof of his wonderful diligence. The bound volumes are 14 in number, and they occupy a space of 2 ft. 6 in. on a shelf. They contain 518 Papers, a list of which is appended, and they form such an important part of his life's work, that his biography would be very incomplete without a reference to them.
He was very careful in selecting the channels for the publication of his Papers. Most of the early Papers were published in the Transactions of the Cambridge Philosophical Society, but several of the most important, such as his Paper “On an inequality of long period in the motions of the Earth and Venus,” were published in the Philosophical Transactions of the Royal Society, and others, such as the articles on “The Figure of the Earth,” “Gravitation,” “Tides and Waves,” &c, were published in Encyclopaedias. After his removal to Greenwich nearly all his Papers on scientific subjects (except astronomy), such as Tides, Magnetism, Correction of the Compass, &c, &c, were communicated to the Royal Society, and were published in the Philosophical Transactions. But everything astronomical was reserved for the Royal Astronomical Society.