We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present a software package for single-dish data processing of spacecraft signals observed with VLBI-equipped radio telescopes. The Spacecraft Doppler tracking (SDtracker) software allows one to obtain topocentric frequency detections with a sub-Hz precision and reconstructed and residual phases of the carrier signal of any spacecraft or landing vehicle at any location in the Solar System. These data products are estimated using the ground-based telescope’s highly stable oscillator as a reference, without requiring an a priori model of the spacecraft dynamics nor the downlink transmission carrier frequency. The software has been extensively validated in multiple observing campaigns of various deep space missions and is compatible with the raw sample data acquired by any standard VLBI radio telescope worldwide. In this paper, we report the numerical methodology of SDtracker, the technical operations for deployment and usage, and a summary of use cases and scientific results produced since its initial release.
Mid- and far-infrared (IR) photometric and spectroscopic observations are fundamental to a full understanding of the dust-obscured Universe and the evolution of both star formation and black hole accretion in galaxies. In this work, using the specifications of the SPace Infrared telescope for Cosmology and Astrophysics (SPICA) as a baseline, we investigate the capability to study the dust-obscured Universe of mid- and far-IR photometry at 34 and
$70\, {\rm{\mu }}\mathrm{m}$
and low-resolution spectroscopy at
$17{-}36\, {\rm{\mu }}\mathrm{m}$
using the state-of-the-art Spectro-Photometric Realisations of Infrared-selected Targets at all-z (Spritz) simulation. This investigation is also compared to the expected performance of the Origins Space Telescope and the Galaxy Evolution Probe. The photometric view of the Universe of a SPICA-like mission could cover not only bright objects (e.g.
$L_{IR}>10^{12}\,{\rm L}_{\odot}$
) up to
${z}=10$
, but also normal galaxies (
$L_{IR}<10^{11}\,{\rm L}_{\odot}$
) up to
$\textit{z}\sim4$
. At the same time, the spectroscopic observations of such mission could also allow us to estimate the redshifts and study the physical properties for thousands of star-forming galaxies and active galactic nuclei by observing the polycyclic aromatic hydrocarbons and a large set of IR nebular emission lines. In this way, a cold, 2.5-m size space telescope with spectro-photometric capability analogous to SPICA, could provide us with a complete three-dimensional (i.e. images and integrated spectra) view of the dust-obscured Universe and the physics governing galaxy evolution up to
$\textit{z}\sim4$
.
The Rapid ASKAP Continuum Survey (RACS) is the first large sky survey using the Australian Square Kilometre Array Pathfinder (ASKAP), covering the sky south of
$+41^\circ$
declination. With ASKAP’s large, instantaneous field of view,
${\sim}31\,\mathrm{deg}^2$
, RACS observed the entire sky at a central frequency of 887.5 MHz using 903 individual pointings with 15 minute observations. This has resulted in the deepest radio survey of the full Southern sky to date at these frequencies. In this paper, we present the first Stokes I catalogue derived from the RACS survey. This catalogue was assembled from 799 tiles that could be convolved to a common resolution of
$25^{\prime\prime}$
, covering a large contiguous region in the declination range
$\delta=-80^{\circ}$
to
$+30^\circ$
. The catalogue provides an important tool for both the preparation of future ASKAP surveys and for scientific research. It consists of
$\sim$
2.1 million sources and excludes the
$|b|<5^{\circ}$
region around the Galactic plane. This provides a first extragalactic catalogue with ASKAP covering the majority of the sky (
$\delta<+30^{\circ}$
). We describe the methods to obtain this catalogue from the initial RACS observations and discuss the verification of the data, to highlight its quality. Using simulations, we find this catalogue detects 95% of point sources at an integrated flux density of
$\sim$
5 mJy. Assuming a typical sky source distribution model, this suggests an overall 95% point source completeness at an integrated flux density
$\sim$
3 mJy. The catalogue will be available through the CSIRO ASKAP Science Data Archive (CASDA).
At relatively high frequencies, highly sensitive grating sidelobes occur in the primary beam patterns of low frequency aperture arrays (LFAA) such as the Murchison Widefield Array (MWA). This occurs when the observing wavelength becomes comparable to the dipole separation for LFAA tiles, which for the MWA occurs at
${\sim}300$
MHz. The presence of these grating sidelobes has made calibration and image processing for 300 MHz MWA observations difficult. This work presents a new calibration and imaging strategy which employs existing techniques to process two example 300 MHz MWA observations. Observations are initially calibrated using a new 300 MHz sky-model which has been interpolated from low frequency and high frequency all-sky surveys. Using this 300 MHz model in conjunction with the accurate MWA tile primary beam model, we perform sky-model calibration for the two example observations. After initial calibration a self-calibration loop is performed by all-sky imaging each observation. We mask the main lobe of the all-sky image, and perform a sky-subtraction by estimating the masked image visibilities. We then image the main lobe of the sky-subtracted visibilities, which results in high dynamic range images of the two example observations. These images have been convolved with a Gaussian to a resolution of
$2.4$
arcminutes, with a maximum sensitivity of
${{\sim}}31\,\textrm{mJy/beam}$
. The calibration and imaging strategy demonstrated in this work opens the door to performing science at 300 MHz with the MWA, which was previously an inaccessible domain. With this paper we release the code described below and the cross-matched catalogue along with the code to produce a sky-model in the range 70–1 400 MHz.
Chapter 2 contains the problem statements of the 150 problems in general relativity theory. The chapter is divided into 12 sections with problems organized by different topics defined by the keywords in the section headings.
Chapter 1 contains the problem statements of the 150 problems in special relativity theory. The chapter is divided into nine sections with problems organized by different topics defined by the keywords in the section headings.
Chapter 3 contains the complete and elaborated solutions to all 300 problems stated and described in Chapters 1 and 2, respectively. The idea to present the solutions in a separate chapter is to help the reader to avoid the temptation of peeking at the solutions too soon.
The introductory chapter describes the notation, concepts, and conventions in relativity theory that is used in this problem book. The main purpose of this chapter is to help the reader to relate to the notation and conventions used in textbooks at hand.
The cosmic evolution of the chemical elements from the Big Bang to the present time is driven by nuclear fusion reactions inside stars and stellar explosions. A cycle of matter recurrently re-processes metal-enriched stellar ejecta into the next generation of stars. The study of cosmic nucleosynthesis and this matter cycle requires the understanding of the physics of nuclear reactions, of the conditions at which the nuclear reactions are activated inside the stars and stellar explosions, of the stellar ejection mechanisms through winds and explosions, and of the transport of the ejecta towards the next cycle, from hot plasma to cold, star-forming gas. Due to the long timescales of stellar evolution, and because of the infrequent occurrence of stellar explosions, observational studies are challenging, as they have biases in time and space as well as different sensitivities related to the various astronomical methods. Here, we describe in detail the astrophysical and nuclear-physical processes involved in creating two radioactive isotopes useful in such studies,
$^{26}\mathrm{Al}$
and
$^{60}\mathrm{Fe}$
. Due to their radioactive lifetime of the order of a million years, these isotopes are suitable to characterise simultaneously the processes of nuclear fusion reactions and of interstellar transport. We describe and discuss the nuclear reactions involved in the production and destruction of
$^{26}\mathrm{Al}$
and
$^{60}\mathrm{Fe}$
, the key characteristics of the stellar sites of their nucleosynthesis and their interstellar journey after ejection from the nucleosynthesis sites. This allows us to connect the theoretical astrophysical aspects to the variety of astronomical messengers presented here, from stardust and cosmic-ray composition measurements, through observation of
$\gamma$
rays produced by radioactivity, to material deposited in deep-sea ocean crusts and to the inferred composition of the first solids that have formed in the Solar System. We show that considering measurements of the isotopic ratio of
$^{26}\mathrm{Al}$
to
$^{60}\mathrm{Fe}$
eliminate some of the unknowns when interpreting astronomical results, and discuss the lessons learned from these two isotopes on cosmic chemical evolution. This review paper has emerged from an ISSI-BJ Team project in 2017–2019, bringing together nuclear physicists, astronomers, and astrophysicists in this inter-disciplinary discussion.
Curiously, our Universe was born in a low entropy state, with abundant free energy to power stars and life. The form that this free energy takes is usually thought to be gravitational: the Universe is almost perfectly smooth, and so can produce sources of energy as matter collapses under gravity. It has recently been argued that a more important source of low-entropy energy is nuclear: the Universe expands too fast to remain in nuclear statistical equilibrium, effectively shutting off nucleosynthesis in the first few minutes, providing leftover hydrogen as fuel for stars. Here, we fill in the astrophysical details of this scenario and seek the conditions under which a Universe will emerge from early nucleosynthesis as almost-purely iron. In so doing, we identify a hitherto-overlooked character in the story of the origin of the second law: matter–antimatter asymmetry.
Einstein's theories of special relativity and general relativity form a core part of today's undergraduate (or Masters-level) physics curriculum. This is a supplementary problem book or student's manual, consisting of 150 problems in each of special and general relativity. The problems, which have been developed, tested and refined by the authors over the past two decades, are a mixture of short-form and multi-part extended problems, with hints provided where appropriate. Complete solutions are elaborated for every problem, in a different section of the book; some solutions include brief discussions on their physical or historical significance. Designed as a companion text to complement a main relativity textbook, it does not assume access to any specific textbook. This is a helpful resource for advanced students, for self-study, a source of problems for university teaching assistants, or as inspiration for instructors and examiners constructing problems for their lectures, homework or exams.
The RAD@home RGB-maker Tool is a python-based web application that enables citizen science research through collaboration using open-source technology. The tool fetches FITS image data from NASA SkyView and generates false colour images in Red-Green-Blue channels with contour. This helps in the basic multi-wavelength understanding and characterization of extragalactic objects, and further analysis along with reporting of potential new discoveries in a uniform format. Students from Universities or science-graduate citizens gain skills in RGB-C image analysis and identify unique features in objects via either one-day online-weekend events or week-long in-person training. Trained citizen scientists in turn are part of rare discoveries such as the jet-galaxy interaction system RAD12. The tool has been successfully used by thousands of citizen scientists in India since its launch on 26th January 2021 and has demonstrated the potential during IAU symposium 375 to be part of citizen science efforts with international participants.
Unlike most web-based citizen science programmes, RAD@home citizen scientists are trained in an interactive manner, both online and in person. This Collaboratory model can alleviate various geo-political and socio-economic constraints on the growth of people in underdeveloped regions which is in synergy with mandates of the IAU Office of Astronomy for Development. Owing to its Inter-University collaboratory design, supported by over 30 research institutions, it can attempt to convert the ‘Big Data Problem’ into a ‘Big Data Prospect’ by direct training and involving citizens in discoveries from multi-telescope data. Using the RAD-RGB-maker web-tool, e-astronomers learn the basics of multi-wavelength (UV-optical-IR-radio) extragalactic astronomy and create preliminary discovery reports of unusual radio sources thus becoming Co-Investigator in follow-up observations and publications (e.g. Discovery of RAD12). International expansion of RAD@home has been initiated during the recent IAU symposium 375 through its Educational and Outreach programme.
We performed photo-polarimetry observations for the blazar BL Lacertae (BL Lac) in 2020 to 2021, in which BL Lac showed historical outburst. As a result, we obtained microvariability with a timescale about five minutes and wavelength dependence of polarization degree and angle. These results indicate multiple emission regions and turbulent magnetic field structure.