We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate the physical properties of dust in the environment of three core-collapse supernovae (CCSNe) through mid-infrared (mid-IR) spectral energy distribution (SED) modeling (both analytical and numerical methods) and interpret our results within a Bayesian framework. We provide evidence that the observed late-time mid-IR excess of the SNe can be described by dust models. We conclude that in case of various types of SNe, numerical dust models with a shell-like geometry can be reconciled with analytical models, regarding the essential properties of dust grains.
Mass loss through stellar winds plays a dominant role in the evolution of massive stars. Very massive stars (VMSs, > 100Mȯ) display Wolf-Rayet spectral morphologies (WNh) whilst on the main-sequence. Bestenlehner (2020) extended the elegant and widely used stellar wind theory by Castor, Abbott & Klein (1975) from the optically thin (O star) to the optically thick main-sequence (WNh) wind regime. The new mass-loss description is able to explain the empirical mass-loss dependence on the Eddington parameter and is suitable for incorporation into stellar evolution models for massive and very massive stars. The prescription can be calibrated with the transition mass-loss rate defined in Vink & Gräfener (2012). Based on the stellar sample presented in Bestenlehner et al. (2014) we derive a mass-loss recipe for the Large Magellanic Cloud using the new theoretical mass-loss prescription of Bestenlehner (2020).
Adequate stellar atmosphere models are prerequisite to derive robust stellar parameters from spectroscopic analyses. I will briefly review recent results obtained with the Potdam Wolf-Rayet (PoWR) model atmosphere code, which is applicable to all types of hot stars. Using multi-wavelength observations including the UV, we analyzed large samples of massive stars at various metallicities, gaining important insights on their cosmic role and the feedback to their environment.
A recent extension of PoWR allows to compose the model atmosphere from two zones. A rapidly rotating star, e.g., might possess a cooler equatorial region with a slow wind, and two polar cones with higher photospheric temperature and fast wind. For two examples of rapidly rotating O-type stars, we demonstrate that such model can reproduce wind-line profiles which otherwise would stay inconsistent. Fast rotation, which prevails in particular at low metallicities, thus might bias empirically derived parameters, having implications for feedback as well as for angular-momentum losses of SN and GRB progenitors.
Upcoming large-scale spectroscopic surveys such as WEAVE and 4MOST will provide thousands of spectra of massive stars, which need to be analysed in an efficient and homogeneous way. Studies on massive stars are usually based on samples of a few hundred objects which pushes current spectroscopic analysis tools to their limits because visual inspection is necessary to verify the spectroscopic fit.
The novel spectroscopic analysis pipeline takes advantage of the statistics that large samples provide, and determines the model error to account for imperfections in stellar atmosphere codes due to simplified, wrong or missing physics. Considering observational plus model uncertainties improve spectroscopic fits. The pipeline utilises the entire spectrum rather than selected diagnostic lines allowing a wider range of temperature from B to early O stars to be analysed. A small fraction of stars like peculiar, contaminated or spectroscopic binaries require visual inspection, which are identified through their larger uncertainties.
B-type supergiants show enormous potential as resourceful tools to address a wide range of astrophysical questions concerning stellar atmospheres, stellar and galactic evolution and the cosmic distance scale. For the purposes of a comprehensive analysis of these objects we test a hybrid non-LTE approach – line-blanketed model atmospheres computed under the assumptions of local thermodynamic equilibrium (LTE) in combination with non-LTE line-formation calculations. An observational sample of 14 Galactic B-type supergiants with masses below about 30 Mȯ is investigated on the basis of high-resolution Echelle spectra. The results of this analysis – atmospheric and fundamental stellar parameters, the characterisation of the interstellar sightlines to the objects, as well as derived spectroscopic distances and multi-species abundances – are subjected to multiple tests of consistency.
There is evidence that some red supergiants (RSGs) experience phases of episodic mass-loss. These episodes yield more extreme mass-loss rates, further stripping the envelope of the RSG, significantly affecting the further evolution towards the final collapse of the star. Mass lost through RSG outbursts/superwinds will flow outwards and form dust further out from the surface and this dust may be detected and modelled. Here, we aim to derive the surface properties and estimate the global properties of Mid-IR bright RSGs in the Magellanic Clouds. These properties will then be compared to evolutionary predictions and used for future spectral energy distribution fitting studies to measure the mass-loss rates from present circumstellar dust.
In this paper, we present a glimpse of our observations of two Wolf-Rayet (WR) nebulae, NGC2359 and NGC6888 obtained with the SITELLE imaging Fourier transform spectrograph. The data are of unprecedented spatial coverage and cover a broad wavelength range.
We present the results of a magnitude-limited spectroscopic survey of Galactic Wolf-Rayet stars with the HERMES spectrograph mounted on the Mercator telescope. Using cross-correlation to measure radial velocities, we measured the observed binary fractions of the Galactic carbon- (WC) and nitrogen-rich (WN) Wolf-Rayet stars to be and . We used Monte-Carlo simulations with a Bayesian framework to derive the intrinsic multiplicity properties and found and . We find that the majority of WN binaries reside in short-period systems, similar to O stars. However, the orbital period distribution of the Galactic WC population peaks at 5000 d, a discrepancy that challenges our current understanding of binary evolution in Wolf-Rayet stars.
B supergiants (BSGs) lie on the cool end of line-driven wind regime, such that the study of their atmospheres can help us to understand the physics of line-driven winds. So far key features of their spectra, especially in the UV region, could not be reproduced consistently with atmosphere models. This represents a significant gap in our knowledge of their physical properties and behavior, which is particularly striking for BSGs on the cool side of the Bi-Stability Jump (cooler than B1). To address this problem, we analysed a sample of Galactic cool BSGs, with sufficient UV and optical coverage. None of our targets are detected in X-rays with only upper limits existing for some of them.
. We present UVIT/Astrosat UV photometry of the RSG population of the Small Cloud galaxy (SMC). As RSGs are extremely faint in the far-UV, these observations directly probe potential companion stars. From a sample of 861 SMC RSGs, we find 88 have detections at far-UV wavelengths: a clear signature of binarity. Stellar parameters are determined for both components, which allows us to study - for the first time - the mass-ratio (q) distribution of RSG binary systems. We find a flat mass-ratio distribution best describes the observations up to MRSG ∼15M⊙. We account for our main observing bias (i.e. the limiting magnitude of the UVIT survey) to determine the intrinsic RSG binary fraction of 18.8 ± 1.5 %, for mass-ratios in the range 0.3.<q<1.0 and orbital periods approximately in the range 3<log P[days]<8.
The evolutionary link between Red Supergiants and Luminous Blue variables is interesting, but still poorly understood. We present the results of a study of the Galactic candidate luminous blue variable Wray 15-906, revealed via the detection of its infrared circumstellar shell (of ≍2 pc in diameter) with the Wide-field Infrared Survey Explorer (WISE) and the Herschel Space Observatory. Using the stellar atmosphere code CMFGEN and the Gaia parallax, we found that Wray 15-906 is a relatively low-luminosity, log(L/Lȯ) ≍ 5.4, star with a temperature of 25±2 kK. In the framework of single star evolution, the obtained results suggest that Wray 15-906 is a post-red supergiant star with an initial mass of ≍ 25Mȯ and that before exploding as a supernova it could transform for a short time into a WN11h star. The presence of a shell with a mass 2.9±0.5Me indicates that Wray 15-906 has suffered substantial mass loss in the recent past.
The young open cluster NGC 6231 hosts a rich population of O-type binary stars. We study several of these eccentric short-period massive eclipsing binaries and assess their fundamental parameters. The properties of these systems make them interesting targets to study tidally induced apsidal motion. The analysis of apsidal motion offers a powerful means to obtain information about the internal structure of the stars. Indeed, since the rate of apsidal motion in a binary system is proportional to the internal structure constants of the stars composing it, its value gives direct insight into the internal structure and evolutionary state of these stars. Stellar evolution models are constructed based on the observationally-determined fundamental parameters and a theoretical rate of apsidal motion is inferred. The results are striking: Adopting standard stellar evolution models yields a theoretical rate of apsidal motion much larger than the observational value. This discrepancy results from the standard models predicting too low an efficiency of internal mixing and thus too homogenous stars in terms of density. By enforcing the theoretical rates of apsidal motion to match the observational values, enhanced mixing is required, through a large overshooting parameter and/or additional turbulent/rotational mixing. Our analysis leads to the conclusion that the chemically mixed cores in those massive stars must be more extended than anticipated from standard models.
We present our measurements of the amplitude of photometric and spectroscopic variability due to clumping in the wind of Wolf-Rayet (WR) stars. Photometric variability was assessed using TESS light-curves, while spectroscopic variations were obtained from almost 20 years of monitoring of nearly 100 classical (presumably single) stars. Our results show an apparent dependence of the variability amplitude with the stars’ surface temperature and/or terminal velocity. Our interpretation is that it supports the idea that the dominating driver of the clumps in WR winds is a sub-surface convection region.
Mass loss is a key property to understand stellar evolution and in particular for low-metallicity environments. Our knowledge has improved dramatically over the last decades both for single and binary evolutionary models. However, episodic mass loss although definitely present observationally, is not included in the models, while its role is currently undetermined. A major hindrance is the lack of large enough samples of classified stars. We attempted to address this by applying an ensemble machine-learning approach using color indices (from IR/Spitzer and optical/Pan-STARRS photometry) as features and combining the probabilities from three different algorithms. We trained on M31 and M33 sources with known spectral classification, which we grouped into Blue/Yellow/Red/B[e] Supergiants, Luminous Blue Variables, classical Wolf-Rayet and background galaxies/AGNs. We then applied the classifier to about one million Spitzer point sources from 25 nearby galaxies, spanning a range of metallicites (). Equipped with spectral classifications we investigated the occurrence of these populations with metallicity.
We present low-frequency (0.40 – 1.25 GHz) radio observations and modeling of a Fast Blue Optical Transient (FBOT), AT2018cow [Nayana & Chandra(2021)]. Our data are best modeled as an inhomogeneous synchrotron emitting region expanding into an ionized circumstellar medium. We estimate the mass-loss rate of the progenitor star and shock parameters at multiple epochs post-explosion and find that the progenitor has gone through an enhanced phase of mass-loss close to its end-of-life.
We present results from a recent study of the spin rate properties of a sample of more than 400 Galactic O-type stars surveyed by the IACOB and OWN projects. We combine vsini, Teff, and logg estimates with information about the spectroscopic binarity status for 285 of the stars in the sample, and provide a renewed overview about how the empirical distribution of projected rotational velocities in the O-star domain depends on mass, evolutionary and binary status. The obtained distributions are then compared with predictions of state-of-the-art population synthesis simulations including binary interaction, and used to provide hints about the initial velocity distribution of stars with masses in the range 15-80 M⊙.
We compare pre-supernova observations with synthetic photometry from stellar evolution models to infer the progenitor properties of the seven known progenitors of Type Ib and IIb supernovae. Our results are roughly consistent with a hydrogen mass threshold of for a Type II appearance.
Recent observations of Type II supernovae have revealed that their red-supergiant progenitors lose a significant amount of mass during the last years of their evolution. However, because it is difficult to discover supernovae within days of explosion, the diversity of mass loss in red supergiants has not yet been fully mapped. This talk presented the case of SN 2021yja, which was serendipitously imaged within hours of explosion and observed with a sub-day cadence during its rise to peak. From the exceptionally long plateau period and the high nickel mass, we infer a relatively massive red-supergiant progenitor star. However, archival imaging from the Hubble Space Telescope places a stringent upper limit of on its progenitor mass. We discuss these conflicting constraints in the context of the larger sample of exploding red supergiants. Our analysis helps illuminate the poorly understood mechanism(s) behind red-supergiant mass loss.
The recent generation of dedicated wide-field, high-cadence sky-surveys have overwhelmed discovery statistics for all manner of extra-galactic transients, and uncovered new phenomena seemingly linked to the demise of massive stars. For the more established classes of transients, such as core-collapse supernovae, surges in discoveries are allowing true population studies to provide quantitative constraints not only on the explosion properties, but also on the progenitor populations. Crucially, such population insights are benefiting from creation of samples of transients constructed with largely unbiased methods for discovery and characterisation. Surrounding these discoveries are increasing samples of extreme transients that do not fit the standard core-collapse paradigm - requiring the invocation of exotic progenitor stars and placing demands on the stellar evolution of such systems. Here I will provide a high-level observationally-driven overview of recent results related to massive stellar transients.
At the time of this meeting, the latest Gaia data release is EDR3, published on 3 December 2020, but the next one, DR3, will appear soon, on 13 June 2022. This contribution describes, on the one hand, Gaia EDR3 results on massive stars and young stellar clusters, placing special emphasis on how a correct treatment of the astrometric and photometric calibration yields results that are simultaneously precise and accurate. On the other hand, it gives a brief description of the exciting results we can expect from Gaia DR3.