We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Understanding the physical and evolutionary properties of Hot Stellar Systems (HSS) is a major challenge in astronomy. We studied the dataset on 13 456 HSS of Misgeld & Hilker (2011, MNRAS, 414, 3 699) that includes 12 763 candidate globular clusters using stellar mass (
$M_s$
), effective radius (
$R_e$
) and mass-to-luminosity ratio (
$M_s/L_\nu$
), and found multi-layered homogeneous grouping among these stellar systems. Our methods elicited eight homogeneous ellipsoidal groups at the finest sub-group level. Some of these groups have high overlap and were merged through a multi-phased syncytial algorithm motivated from Almodóvar-Rivera & Maitra (2020, JMLR, 21, 1). Five groups were merged in the first phase, resulting in three complex-structured groups. Our algorithm determined further complex structure and permitted another merging phase, revealing two complex-structured groups at the highest level. A nonparametric bootstrap procedure was also used to estimate the confidence of each of our group assignments. These assignments generally had high confidence in classification, indicating great degree of certainty of the HSS assignments into our complex-structured groups. The physical and kinematic properties of the two groups were assessed in terms of
$M_s$
,
$R_e$
, surface density and
$M_s/L_\nu$
. The first group consisted of older, smaller and less bright HSS while the second group consisted of brighter and younger HSS. Our analysis provides novel insight into the physical and evolutionary properties of HSS and also helps understand physical and evolutionary properties of candidate globular clusters. Further, the candidate globular clusters (GCs) are seen to have very high chance of really being GCs rather than dwarfs or dwarf ellipticals that are also indicated to be quite distinct from each other.
Long-duration gamma-ray burst (GRB) afterglow observations offer cutting-edge opportunities to characterise the star formation history of the Universe back to the epoch of reionisation, and to measure the chemical composition of interstellar and intergalactic gas through absorption spectroscopy. The main barrier to progress is the low efficiency in rapidly and confidently identifying which bursts are high redshift (
$z > 5$
) candidates before they fade, as this requires low-latency follow-up observations at near-infrared wavelengths (or longer) to determine a reliable photometric redshift estimate. Since no current or planned gamma-ray observatories carry near-infrared telescopes on-board, complementary facilities are needed. So far this task has been performed by instruments on the ground, but sky visibility and weather constraints limit the number of GRB targets that can be observed and the speed at which follow-up is possible. In this work we develop a Monte Carlo simulation framework to investigate an alternative approach based on the use of a rapid-response near-infrared nano-satellite, capable of simultaneous imaging in four bands from
$0.8$
to
$1.7\,\unicode{x03BC}$
m (a mission concept called SkyHopper). Using as reference a sample of 88 afterglows observed with the GROND instrument on the MPG/ESO telescope, we find that such a nano-satellite is capable of detecting in the H-band (1.6
$\unicode{x03BC}$
m)
$72.5\% \pm 3.1\%$
of GRBs concurrently observable with the Swift satellite via its UVOT instrument (and
$44.1\% \pm 12.3\%$
of high redshift (
$z>5$
) GRBs) within 60 min of the GRB prompt emission. This corresponds to detecting
${\sim}55$
GRB afterglows per year, of which 1–3 have
$z > 5$
. These rates represent a substantial contribution to the field of high-z GRB science, as only 23
$z > 5$
GRBs have been collectively discovered by the entire astronomical community over the last
${\sim}24$
yr. Future discoveries are critically needed to take advantage of next generation follow-up spectroscopic facilities such as 30m-class ground telescopes and the James Webb Space Telescope. Furthermore, a systematic space-based follow-up of afterglows in the near-infrared will offer new insight on the population of dusty (‘dark’) GRBs which are primarily found at cosmic noon (
$z\sim 1-3$
). Additionally, we find that launching a mini-constellation of 3 near-infrared nano-satellites would increase the detection fraction of afterglows to
${\sim}83\%$
and substantially reduce the latency in the photometric redshift determination.
We present a catalogue of isolated field elliptical (IfE) galaxies drawn from the W1 field of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). 228 IfEs were identified from a flux-limited
$(r<21.8)$
galaxy catalogue which corresponds to a density of 3 IfE/sq.deg. For comparison we consider a sample of elliptical galaxies living in dense environments, based on identification of the brightest cluster galaxies (BGCs) in the same survey. Using the same dataset for the comparison sample ensures a uniform selection, including in the redshift range as IfEs (i.e.
$0.1<z<0.9$
). A comparison of elliptical galaxies in different environments reveals that IfEs and BCGs have similar behaviours in their colours, star formation activities, and scaling relations of mass–size and size–luminosity. IfEs and BCGs have similar slopes in the scaling relations with respect to cluster ellipticals within the
$-24 \leq M_{r} \leq -22$
magnitude and
$10.2< \textrm{log}(M_{*}/ \textrm M_\odot)\leq12.0$
mass ranges. Three IfEs identified in this study can be associated with fossil groups found in the same survey area which gives clues for future studies.
We present the first unbiased survey of neutral hydrogen absorption in the Small Magellanic Cloud. The survey utilises pilot neutral hydrogen observations with the Australian Square Kilometre Array Pathfinder telescope as part of the Galactic Australian Square Kilometre Array Pathfinder neutral hydrogen project whose dataset has been processed with the Galactic Australian Square Kilometre Array Pathfinder-HI absorption pipeline, also described here. This dataset provides absorption spectra towards 229 continuum sources, a 275% increase in the number of continuum sources previously published in the Small Magellanic Cloud region, as well as an improvement in the quality of absorption spectra over previous surveys of the Small Magellanic Cloud. Our unbiased view, combined with the closely matched beam size between emission and absorption, reveals a lower cold gas faction (11%) than the 2019 ATCA survey of the Small Magellanic Cloud and is more representative of the Small Magellanic Cloud as a whole. We also find that the optical depth varies greatly between the Small Magellanic Cloud’s bar and wing regions. In the bar we find that the optical depth is generally low (correction factor to the optically thin column density assumption of
$\mathcal{R}_{\mathrm{HI}} \sim 1.04$
) but increases linearly with column density. In the wing however, there is a wide scatter in optical depth despite a tighter range of column densities.
Recently Vernstrom et al. (2021, MNRAS) claimed the first definitive detection of the synchrotron cosmic web, obtained by ‘stacking’ hundreds of thousands of pairs of close-proximity clusters in low-frequency radio observations and looking for a residual excess signal spanning the intracluster bridge. A reproduction study by Hodgson et al. (2022, PASA, 39, e013), using both the original radio data as well as new observations with the Murchison Widefield Array, failed to confirm these findings. Whilst the detection remains unsure, we here turn to stacking a simulated radio sky to understand what kind of excess radio signal is predicted by our current best cosmological models of the synchrotron cosmic web. We use the FIlaments & GAlactic RadiO (FIGARO; Hodgson et al. 2021a, PASA, 38, e047) simulation, which models both the synchrotron cosmic web as well as various subtypes of active galactic nucleii and star-forming galaxies. Being a simulation, we have perfect knowledge of the location of clusters and galaxy groups which we use in our own stacking experiment. Whilst we do find an excess radio signature in our stacks that is attributable to the synchrotron cosmic web, its distribution is very different to that found by Vernstrom et al. (2021, MNRAS). Instead, we observe the appearance of excess emission on the immediate interiors of cluster pairs as a result of asymmetric, ‘radio relic’-like shocks surrounding cluster cores, whilst the excess emission spanning the intracluster region—attributable to filaments proper—is two orders of magnitude lower and undetectable in our experiment even under ideal conditions.
Spectral observations with high temporal and frequency resolution are of great significance for studying the fine structures of solar radio bursts. In addition, it is helpful to understand the physical processes of solar eruptions. In this paper, we present the design of a system to observe solar radio bursts with high temporal and frequency resolutions at frequencies of 25–110 MHz. To reduce the impact of analog devices and improve the system flexibility, we employ various digital signal processing methods to achieve the function of analog devices, such as polarisation synthesis and beamforming. The resourceful field programmable gate array is used to process radio signals. The system has a frequency resolution of
$\sim$
30 kHz and a temporal resolution of up to 0.2 ms. The left/right circular polarisation signals can be simultaneously observed. At present, the system has been installed at Chashan Solar Observatory operated by the Institute of Space Science, Shandong University. The system is running well, multiple bursts have been observed, and relevant data have been obtained.
Thermal x-rays from neutron stars are mainly radiated by accretion discs originating in the flux of material from a companion star. The companions are white dwarf stars with a range of masses, and some black holes. X-ray bursts are attributed to catastrophic nuclear events on the neutron star surface following accretion from the companion. Structure in the rotating accretion disc is observed as quasi-periodic oscillations (QPOs).
Most of our understanding of the location and nature of the beamed emission comes from the pulse profiles, which are available over the whole electromagnetic spectrum. The radio profiles are the most detailed, with observations of polarisation, width and components.
Finding the population of pulsars in the Milky Way galaxy requires a knowledge of the parameters and limitations of the various surveys made with different instruments and in different regions of the sky. We list the available survey data and show how models of the galactic population can be compared with the observational data, allowing estimates of pulsar birthrate and lifetime. Determination of accurate positions of individual pulsars require a Solar System ephemeris and a complex geometrical computation. Binary pulsar orbits display reletivistic effects which can be measured with remarkable precision to yield parameters of orbits and checks on relativistic theory.
The characteristic steps in the rotation rates of pulsars are known as glitches and arise in the irregular transfer of angular momentum from the interior to the crust as a neutron star spins down. They are related to the structure and the fluid dynamics of some superfluid components. The angular momentum is quantised in vortices, which may be pinned to the crystal structure of the crust. Glitches may be related to catastrophic unpinning events and to cracking of the crust itself. Timing noise is quasi-random variation in rotation rate. In many pulsars, the spin-down rate is seen to switch abruptly as the emission changes, indicating that changes in magnetospheric particle flows are responsible for both spin-down and radiation.
Pulsar distances are obtained from their frequency dispersion, geometrically from annual parallax, and from optical identifiction with supernova remnants, globular clusters and binary companions. For most pulsars, distances are only available from observation of effects of propagation in the interstellar medium, particularly neutral hydrogen absorption and frequency dispersion. Interpretation of the dispersion measure requires a model of the electron distribution through the Galaxy.
Magnetars were originally observed as high-energy emitters as either soft gamma-ray repeaters (SGRs) or anomalous x-ray pulsars (AXPs). They are very active, mainly observed as x-ray sources, apparently very young and probably part of the general population of pulsars but with much larger magnetic fields. The origin of the large magnetic fields is unclear.
Stable neutron stars exist with masses approximately between one and two solar masses, and radii of approximately 10 to 11 km. The structure is determined primarily by a balance between gravitation and the repulsion between adjacent neutrons. The configuration depends on the equation of state of the neutron fluid. The rotation of the strong dipolar magnetic field generates a magnetosphere of charged particles, which co-rotates with the star.
Precision timing of pulses is at the heart of pulsar research. Pulse arrival times can be measured to an accuracy of only a few metres travel time, and analysis must take account of pulsar positions and the Earth’s orbit, the Römer correction to the barycentre, and General Relativistic corrections. Pulsar timing contributes to the comparison of fundamental positional reference frames. Timing provides periods and period changes on short and long time scales, giving pulsar ages and proper motions. The precision timing of some millisecond pulsars is comparable to the best terrestrial laboratory clocks.
Digitisation of incoming signals at nanosecond intervals allows complex manipulation of radio signals to provide for simultaneous multi-beam and multi-frequency operation. The periodic signals from pulsars must be extracted from background noise, allowing for frequency dispersion in propagation through the interstellar medium.
The remnant of a supernova explosion may be observed for some thousands of years in close relation to a pulsar. Radiation from a pulsar may excite radiation from the interstellar medium, causing a pulsar wind nebula, which may be asymmetric due to velocity of the pulsar
The radio and high-energy profiles show that the emitting regions are concentrated in gaps in the magnetosphere located over the magnetic poles and near the velocity of light cylinder. The radio sources of most normal pulsars are distributed unevenly over the polar cap and are highly concentrated, broadband and variable. Their excitation may move laterally, causing drifting in sub-pulse timing. Other radio emitters are located close to the gamma-ray emitters in the outer magnetosphere. Almost all radio pulses are highly polarised; the sweep of position angle in the radio pulses is related to the magnetic field at the location of the emitters.