We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The evolution of the five largest satellites of Uranus during the crossing of the 5/3 mean motion resonance between Ariel and Umbriel is strongly affected by chaotic motion. Studies with numerical integrations of the equations of motion and analysis of Poincaré surface sections provided helpful insights to the role of chaos on the system. However, they lack of a quantification of this chaos in the phase-space. Here, we construct stability maps using the frequency analysis method. We determine that for low energies (small eccentricity and/or inclinations), the phase-space is mainly stable. As the energy increases, the chaotic regions replace the stable motion, until only small, localized libration regions remain stable.
Long-period variables are bright, evolved red giant stars showing periodic photometric changes due to stellar pulsation. They follow one or more period-luminosity and period-age relations, which make them highly promising distance indicators and tracers of young and intermediate-age stellar populations. Such a potential is especially interesting in view of the massive amount of data delivered by modern large-scale variability surveys. Crucially, these applications require a clear theoretical understanding of pulsation physics in connection with stellar evolution. Here, I describe an ongoing effort from our collaboration dedicated to the modelling of stellar pulsation in evolved stars, and how this work is impacting our capability of investigating long-period variables and exploiting them for other astrophysical studies. Furthermore, I present our ongoing work aimed at assessing the potential of semi-regular variables, an often neglected sub-type of long-period variables, to be distance indicators complementary to their better-known, more evolved counterparts, the Mira variables.
We present the first results from JWST/NIRSPEC spectroscopy of massive quiescent galaxy candidates at 3<z<4 to complete the spectroscopic survey of Schreiber et al. 2018. In the first six objects targeted (all of which were too faint to secure spectroscopic identifications from the ground) they all are confirmed as yet more massive quiescent galaxies at 3<z<4. The JWST spectra are high signal-to-noise and unambiguous. Most of them have ages of a few hundred Myr from stellar population fits to the spectra and about 1/3 show sign of AGN emission lines. One extraordinary object of stellar mass 1.6×1011 M⊙ shows a red spectrum with evidence of a 4000Å break and an age of ≳ 1Gyr at z=3.2 and forming at z>6.
Great progress has been made using VLBI techniques to measure trigonometric parallaxes to masers associated with young, high-mass stars, in order to map the spiral structure of the Milky Way. However, large numbers of parallax distance have only been obtained over about half of the Galaxy. Here I discuss the use of 3-dimensional kinematic distances for completing the map with many sources well past the Galactic Center.
We report on a direct comparison of VLBI maser data and ALMA thermal-emission data for the high-mass protostar G353.273+0.641. We detected a gravitationally-unstable disk by dust and a high-velocity jet traced by a thermal CO line by ALMA long-baselines (LB). 6.7 GHz CH3OH masers trace infalling streamlines inside the disk. The innermost maser ring indicates another compact accretion disk of 30 au. Such a nested system could be caused by angular momentum transfer by the spiral arms. 22 GHz H2O masers trace the jet-accelerating region, which are directly connecting the CO jet and the protostar. The recurrent maser flares imply episodic jet ejections per 1–2 yr, while typical separation of CO knots indicates a variation of outflow rate per 100 yr. Our study demonstrates that VLBI maser observations are still a powerful tool to explore detailed structures nearby high-mass protostars by combining ALMA LB.
RR Lyrae (RR Lyr) stars are a well-known and useful distance indicator for old stellar populations such as globular clusters and dwarf galaxies. Fundamental-mode RR Lyr (RRab) stars are commonly used to measure distances, and the accuracy of the determined distance is strongly constrained by metallicity. Here, we investigate the metallicity dependence in the period–luminosity (PL) relation of double-mode RR Lyr (RRd) stars. We find and establish a linear relation between metallicity and period or period ratio for RRd stars. This relation can predict the metallicity as accurately as the low-resolution spectra. Based on this relation, we establish a metallicity-independent PL relation for RRd stars. Combining the distance of the Large Magellanic Cloud and Gaia parallaxes, we calibrate the zero point of the derived PL relation to an error of 0.022 mag. Using RRd stars, we measure the distances of globular clusters and dwarf galaxies with an accuracy of 2-3% and 1-2%, respectively. In the future, RRd stars could anchor galaxy distances to an accuracy of 1.0% and become an independent distance ladder in the Local Group.
Astrometric very long baseline interferometry (VLBI) observations of stellar masers are an excellent method to determine distances and proper motions in our Galaxy. Large maser astrometry surveys, the Bar and Spiral Structure Legacy survey and the VLBI Exploration for Radio Astrometry, allowed astronomers to determine fundamental Galactic parameters, such as the rotation curve and the distance to the Galactic centre, as well as to trace the spiral arms. In this review, the results of these surveys will be summarised and compared with astrometric measurements using other methods.
The BEBOP (Binaries Escorted By Orbiting Planets) survey is a search for circumbinary planets using the radial velocity spectrographs HARPS and SOPHIE, currently focusing on single-lined binaries with a mass ratio < 0.3. Circumbinary systems are an important testing ground for planet formation theories as the dynamically complex influence of the binary makes planet formation and survival more difficult. Here we present the results of the survey so far including: confirmed planets such as BEBOP-1c the first circumbinary planet detected in radial velocity; the status of our observations; and preliminary occurrence rates. We compare the early results of the radial velocity survey to the population of circumbinary planets discovered in transit, and suggest that there may be a population of inflated planets close to the inner binary which are detectable in transit but more difficult in radial velocity. Using time-lag tidal theory, we show that this inflation is unlikely caused by tides.
While unobscured and radio-quiet active galactic nuclei are regularly being found at redshifts
$z > 6$
, their obscured and radio-loud counterparts remain elusive. We build upon our successful pilot study, presenting a new sample of low-frequency-selected candidate high-redshift radio galaxies (HzRGs) over a sky area 20 times larger. We have refined our selection technique, in which we select sources with curved radio spectra between 72–231 MHz from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. In combination with the requirements that our GLEAM-selected HzRG candidates have compact radio morphologies and be undetected in near-infrared
$K_{\rm s}$
-band imaging from the Visible and Infrared Survey Telescope for Astronomy Kilo-degree Infrared Galaxy (VIKING) survey, we find 51 new candidate HzRGs over a sky area of approximately
$1200\ \mathrm{deg}^2$
. Our sample also includes two sources from the pilot study: the second-most distant radio galaxy currently known, at
$z=5.55$
, with another source potentially at
$z \sim 8$
. We present our refined selection technique and analyse the properties of the sample. We model the broadband radio spectra between 74 MHz and 9 GHz by supplementing the GLEAM data with both publicly available data and new observations from the Australia Telescope Compact Array at 5.5 and 9 GHz. In addition, deep
$K_{\rm s}$
-band imaging from the High-Acuity Widefield K-band Imager (HAWK-I) on the Very Large Telescope and from the Southern Herschel Astrophysical Terahertz Large Area Survey Regions
$K_{\rm s}$
-band Survey (SHARKS) is presented for five sources. We discuss the prospects of finding very distant radio galaxies in our sample, potentially within the epoch of reionisation at
$z \gtrsim 6.5$
.
The three-body problem is famously chaotic, with no closed-form analytical solutions. However, hierarchical systems of three or more bodies can be stable over indefinite timescales. A system is considered hierarchical if the bodies can be divided into separate two-body orbits with distinct time and length scales, such that one orbit is only mildly affected by the gravitation of the other bodies. Previous work has mapped the stability of such systems at varying resolutions over a limited range of parameters, and attempts have been made to derive analytic and semi-analytic stability boundary fits to explain the observed phenomena. Certain regimes are understood relatively well. However, there are large regions of the parameter space which remain unmapped, and for which the stability boundary is poorly understood. We present a comprehensive numerical study of the stability boundary of hierarchical triples over a range of initial parameters. Specifically, we consider the mass ratio of the inner binary to the outer third body (
$q_\mathrm{out}$
), mutual inclination (i), initial mean anomaly and eccentricity of both the inner and outer binaries (
$e_\mathrm{in}$
and
$e_\mathrm{out}$
respectively). We fit the dependence of the stability boundary on
$q_\mathrm{ out}$
as a threshold on the ratio of the inner binary’s semi-major axis to the outer binary’s pericentre separation
$a_\mathrm{in}/R_\mathrm{p, out} \leq 10^{-0.6 + 0.04q_\mathrm{out}}q_\mathrm{out}^{0.32+0.1q_\mathrm{out}}$
for coplanar prograde systems. We develop an additional factor to account for mutual inclination. The resulting fit predicts the stability of
$10^4$
orbits randomly initialised close to the stability boundary with
$87.7\%$
accuracy.